filmov
tv
QIP2021 | The membership problem of constant-sized quantum correlations is undecidable (Honghao Fu)
Показать описание
Authors: Honghao Fu, Carl Miller and William Slofstra
Affiliations: QUICS, University of Maryland | QUICS, University of Maryland, and National Institute of Standards and Technology | University of Waterloo
Abstract:
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is quantum? This question is central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations --- that is, correlations for which the number of measurements and number of measurement outcomes are fixed --- such that solving the quantum membership problem for this family is computationally impossible. Intuitively, our result means that the undecidability that arises in understanding Bell experiments is innate, and is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and from undecidability results of the third author for linear system nonlocal games.
Get entangled with us!
Affiliations: QUICS, University of Maryland | QUICS, University of Maryland, and National Institute of Standards and Technology | University of Waterloo
Abstract:
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is quantum? This question is central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations --- that is, correlations for which the number of measurements and number of measurement outcomes are fixed --- such that solving the quantum membership problem for this family is computationally impossible. Intuitively, our result means that the undecidability that arises in understanding Bell experiments is innate, and is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and from undecidability results of the third author for linear system nonlocal games.
Get entangled with us!