Prove that the function `f` given by `f(x)=log cos x` is strictly | Class 12 Maths | Doubtnut

preview_player
Показать описание
Prove that the function `f` given by `f(x)=log cos x` is strictly decreasing on `(0, pi/2)` and strictly increasing on `(pi/2, pi)`

Welcome to Doubtnut. Doubtnut is World’s Biggest Platform for Video Solutions of Physics, Chemistry, Math and Biology Doubts with over 5 Lakh+ Video Solutions. Doubtnut is a Q&A App for Math, Physics, Chemistry and Biology (up to JEE Advanced and NEET Level), Where You Can Ask Unlimited Questions by Clicking a Picture of Doubt on Doubtnut App and Get Instant Video Solution.
________________________

Online Class में Admission लेने के लिए यहाँ click करें :
👉Class 12 | CBSE Boards | English Medium :
👉कक्षा 12 | CBSE बोर्ड | हिंदी माध्यम :

Doubtnut App Link:

________________________

Subscribe Our YouTube Channels:

______________________

Follow Us:

Our Telegram Pages:

________________________
Contact Us:
👉 Have Any Query? Ask Us.
🤙 Call: 01247158250
💬 WhatsApp: 8400400400

#Maths
#Class12Maths
#Class11Maths
#APPLICATIONOFDERIVATIVES
#Class12
Рекомендации по теме