filmov
tv
MIT 6.S191 (2023): Deep Generative Modeling
![preview_player](https://i.ytimg.com/vi/3G5hWM6jqPk/maxresdefault.jpg)
Показать описание
MIT Introduction to Deep Learning 6.S191: Lecture 4
Deep Generative Modeling
Lecturer: Ava Amini
2023 Edition
Lecture Outline
0:00 - Introduction
5:48 - Why care about generative models?
7:33 - Latent variable models
9:30 - Autoencoders
15:03 - Variational autoencoders
21:45 - Priors on the latent distribution
28:16 - Reparameterization trick
31:05 - Latent perturbation and disentanglement
36:37 - Debiasing with VAEs
38:55 - Generative adversarial networks
41:25 - Intuitions behind GANs
44:25 - Training GANs
50:07 - GANs: Recent advances
50:55 - Conditioning GANs on a specific label
53:02 - CycleGAN of unpaired translation
56:39 - Summary of VAEs and GANs
57:17 - Diffusion Model sneak peak
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
Deep Generative Modeling
Lecturer: Ava Amini
2023 Edition
Lecture Outline
0:00 - Introduction
5:48 - Why care about generative models?
7:33 - Latent variable models
9:30 - Autoencoders
15:03 - Variational autoencoders
21:45 - Priors on the latent distribution
28:16 - Reparameterization trick
31:05 - Latent perturbation and disentanglement
36:37 - Debiasing with VAEs
38:55 - Generative adversarial networks
41:25 - Intuitions behind GANs
44:25 - Training GANs
50:07 - GANs: Recent advances
50:55 - Conditioning GANs on a specific label
53:02 - CycleGAN of unpaired translation
56:39 - Summary of VAEs and GANs
57:17 - Diffusion Model sneak peak
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191 (2023): Deep Generative Modeling
MIT 6.S191 (2023): Deep Learning New Frontiers
MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2022): Deep Generative Modeling
MIT Introduction to Deep Learning (2023) | 6.S191
MIT 6.S191 (2023): Text-to-Image Generation
MIT 6.S191 (2021): Deep Generative Modeling
MIT 6.S191 (2023): Robust and Trustworthy Deep Learning
MIT 6.S191 (2023): The Future of Robot Learning
MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2023): The Modern Era of Statistics
MIT 6.S191 (2023): Convolutional Neural Networks
MIT 6.S191 (2023): Reinforcement Learning
MIT 6.S191: Language Models and New Frontiers
Barack Obama: Intro to Deep Learning | MIT 6.S191
MIT Deep Learning 6.S191 Teaser
MIT 6.S191: Convolutional Neural Networks
MIT Introduction to Deep Learning (2022) | 6.S191
MIT 6.S191 (2021): Deep Learning New Frontiers
MIT 6.S191 (2021): Introduction to Deep Learning
MIT 6.S191 (2021): Recurrent Neural Networks
MIT 6.S191: Deep Learning New Frontiers
MIT 6.S191 (2022): Recurrent Neural Networks and Transformers
MIT 6.S191 (2022): Deep Learning New Frontiers
Комментарии