filmov
tv
MIT 6.S191: Convolutional Neural Networks
Показать описание
MIT Introduction to Deep Learning 6.S191: Lecture 3
Convolutional Neural Networks for Computer Vision
Lecturer: Alexander Amini
* New 2024 Edition *
Lecture Outline
0:00 - Introduction
2:45 - Amazing applications of vision
4:56 - What computers "see"
13:09- Learning visual features
18:53 - Feature extraction and convolution
22:12 - The convolution operation
28:38 - Convolution neural networks
37:10 - Non-linearity and pooling
41:23 - End-to-end code example
43:21 - Applications
46:14 - Object detection
57:10 - End-to-end self driving cars
1:06:15 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
Convolutional Neural Networks for Computer Vision
Lecturer: Alexander Amini
* New 2024 Edition *
Lecture Outline
0:00 - Introduction
2:45 - Amazing applications of vision
4:56 - What computers "see"
13:09- Learning visual features
18:53 - Feature extraction and convolution
22:12 - The convolution operation
28:38 - Convolution neural networks
37:10 - Non-linearity and pooling
41:23 - End-to-end code example
43:21 - Applications
46:14 - Object detection
57:10 - End-to-end self driving cars
1:06:15 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191: Convolutional Neural Networks
MIT 6.S191 (2023): Convolutional Neural Networks
MIT 6.S191 (2020): Convolutional Neural Networks
MIT 6.S191 (2021): Convolutional Neural Networks
MIT 6.S191 (2022): Convolutional Neural Networks
MIT Introduction to Deep Learning | 6.S191
MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2018): Convolutional Neural Networks
Barack Obama: Intro to Deep Learning | MIT 6.S191
MIT 6.S191 (2019): Convolutional Neural Networks
MIT 6.S191: Deep Generative Modeling
MIT Introduction to Deep Learning (2023) | 6.S191
MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2023): Deep Generative Modeling
MIT 6.S191: Reinforcement Learning
MIT 6.S191 (2023): Deep Learning New Frontiers
MIT 6.S191: Building AI Models in the Wild
MIT 6.S191: (Google) Generative AI for Media
Introduction to Convolutional Neural Network (MIT 6.S191 Lab)
MIT 6.S191 (2020): Introduction to Deep Learning
MIT 6.S094: Convolutional Neural Networks for End-to-End Learning of the Driving Task
MIT 6.S191 (2022): Deep Learning New Frontiers
MIT 6.S191: Language Models and New Frontiers
MIT 6.S191 (2020): Neurosymbolic AI
Комментарии