filmov
tv
MIT 6.S191 (2023): Convolutional Neural Networks

Показать описание
MIT Introduction to Deep Learning 6.S191: Lecture 3
Convolutional Neural Networks for Computer Vision
Lecturer: Alexander Amini
2023 Edition
Lecture Outline
0:00 - Introduction
2:37 - Amazing applications of vision
5:35 - What computers "see"
12:38- Learning visual features
17:51 - Feature extraction and convolution
22:23 - The convolution operation
27:30 - Convolution neural networks
34:29 - Non-linearity and pooling
40:07 - End-to-end code example
41:23 - Applications
43:18 - Object detection
51:36 - End-to-end self driving cars
54:08 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
Convolutional Neural Networks for Computer Vision
Lecturer: Alexander Amini
2023 Edition
Lecture Outline
0:00 - Introduction
2:37 - Amazing applications of vision
5:35 - What computers "see"
12:38- Learning visual features
17:51 - Feature extraction and convolution
22:23 - The convolution operation
27:30 - Convolution neural networks
34:29 - Non-linearity and pooling
40:07 - End-to-end code example
41:23 - Applications
43:18 - Object detection
51:36 - End-to-end self driving cars
54:08 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191 (2023): Convolutional Neural Networks
MIT 6.S191: Convolutional Neural Networks
MIT Introduction to Deep Learning (2023) | 6.S191
MIT Introduction to Deep Learning | 6.S191
MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2022): Convolutional Neural Networks
MIT 6.S191 (2023): Deep Generative Modeling
MIT 6.S191 (2023): Reinforcement Learning
MIT 6.S191 (2023): Robust and Trustworthy Deep Learning
MIT 6.S191 (2023): The Future of Robot Learning
MIT 6.S191 (2019): Convolutional Neural Networks
MIT Introduction to Deep Learning (2022) | 6.S191
MIT 6.S191 (2023): Deep Learning New Frontiers
MIT 6.S191: AI for Science
Barack Obama: Intro to Deep Learning | MIT 6.S191
MIT 6.S191 (2023): The Modern Era of Statistics
MIT 6.S191: Reinforcement Learning
MIT 6.S191 (2023): Text-to-Image Generation
What are Convolutional Neural Networks (CNNs)?
MIT Deep Learning 6.S191 Teaser
MIT 6.S191 (2021): Recurrent Neural Networks
MIT 6.S191 (2022): Recurrent Neural Networks and Transformers
MIT 6.S191 (2021): Introduction to Deep Learning
MIT 6.S191 (2020): Machine Learning for Scent
Комментарии