MIT Deep Learning Genomics - Lecture 4 - Recurrent Neural Networks (Spring 2020)
MIT 6.S191: Deep Generative Modeling
MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191: Convolutional Neural Networks
MIT Introduction to Deep Learning | 6.S191
MIT 6.S191 (2022): Recurrent Neural Networks and Transformers
MIT 6.S191 (2023): Deep Generative Modeling
MIT 6.S191 (2020): Recurrent Neural Networks
MIT 6.S191 (2019): Deep Generative Modeling
Lecture 4: Signal Propagation and Dynamical Isometry in Deep Neural Networks (English)
MIT 6.S191 (2020): Introduction to Deep Learning
MIT Introduction to Deep Learning (2023) | 6.S191
Efficient Computing for Deep Learning, Robotics, and AI (Vivienne Sze) | MIT Deep Learning Series
MIT 6.S191 (2023): Robust and Trustworthy Deep Learning
MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention
MIT 6.S191 (2018): Deep Learning Limitations and New Frontiers
MIT 6.S191 (2020): Deep Generative Modeling
MIT Introduction to Deep Learning (2022) | 6.S191
MIT 6.S191 (2020): Convolutional Neural Networks
MIT 6.S191 (2018): Sequence Modeling with Neural Networks
MIT 6.S191: Building AI Models in the Wild
MIT 6.S191 (2022): Deep Generative Modeling
Комментарии
This was an excellent introduction to the topic, I could not ask for more. Now Ill need to dive in into the math involved :B
urbanfps
I actually like this session's lecture on generative models more than the more recent session's lecture!
_gunna
yup!!
where is lecture 3??
kindly post it !
ryandsouza
Now I feel awash in perceptrons without a good feel for the vocabulary to explain how all of it interacts. In fact, I could stand a refresher course in derivatives and finally learn matrix math. I can't wait for introtodeeplearning.com to be fleshed out with examples, though I read somewhere I need Windows 10 or macOS for the labs.