Can you find area of the Green shaded Triangle? | (Justify) | #math #maths | #geometry

preview_player
Показать описание
Learn how to find the area of the Green shaded Triangle. Important Geometry and Algebra skills are also explained: Pythagorean theorem; area of the triangle formula;

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you find area of the Green shaded Triangle? | (Justify) | #math #maths | #geometry

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#FindGreenArea #GreenTriangle #PythagoreanTheorem #IsoscelesTriangles #GeometryMath
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

There is a second solution, a = 21 and h = 28. In this solution, BD = AB - a = 35 - 21 = 14. The area of ΔBCD is (1/2)bh = (1/2)(14)(28) = 196. As a check, tan(x) = BD/CD = 14/28 = 1/2. tan(2x) = 28/21 = 4/3. Applying the tangent double angle formula, this is correct. In PreMath's solution, tan(x) = 7/21 = 1/3 and tan(2x) = 21/28 = 3/4, which also is correct.

jimlocke
Автор

The solution is NOT unique, because it also works with a=21 and h=28. This is because (a-h) ^2 = 49, thus a-h = +/- 7. if a-h= -7, then 2a=42 -> a=21, h=28. In that case DB=14 and [BDC] = 14*28/2 = 196 cm^2. To test the solution, a=21 --> 2x=53.13 --> x=26.565 -> tan (x) =1/2 = 14/28 works fine too.

juanalfaro
Автор

base of the white triangle = b
height of the white triangle = h
bh/2 = 294 => h = 2(294)/b
b^2 + h^2 = 35^2 => b^2 + (2(294)/b)^2 = 35^2
let b^2 = y
y^2 - (35^2)y + (2(294))^2 = 0
2y = (35^2) +/- ✓((35^4) - 4(2(294))^2)
294 = (7)(7)(6), 35 = (7)(5)
2y = (35^2) +/- 49✓((5^4) - 4(2(6))^2) = (35^2) +/- 49✓(25^2 - 24^2) = (35^2) +/- 49✓((25 + 24)(26 - 24)) = (35^2) +/- 49(7) = 49 (25 +/- 7) = 49(32) or 49(18)
y = 49(16) or 49(9)
b = 28 or 21
The big triangle (white + green) is an isosceles triangle (2x, 90 - x, 90 - x)
The sum of the white base and green base = 35, the green base = 35 - 28 or 35 - 21 => 7 or 14
the green area = (7/28)(294) cm^2 or (14/21)(294) cm^2 = 73.5 cm^2 or 196 cm^2

cyruschang
Автор

I propose something else.
*Area of ACD = 294 = (1/2).h.AD = (h^2)/(2.tan(2.x)) with h = CD. Unknown area = A = (1/2).h.DB = (1/2).h.(h.tan(x)) = (1/2).(h^2).tan(x)
So A/294 = tan(x).tan(2.x) and A = 294.tan(x).tan(2.x).
*We have: h/AD = tan(2.x) and h.AD = 2.294 = 588. Let's multiply: h^2 = 588.tan(2.x). Let's divide: AD^2 = 588/tan(2.x)
In ADC: 35^2 = h^2 + AD^2, so 35^2 = 588.tan(2.x) + 588/tan(2.x), we simplify: 12.(tan(2.x))^2 -25.tan(2.x) +12 = 0. Delta = 625 -576 = 49
Two possibilities. tan(2.x) = 4/3 or tan(2.x) = 3/4.
*If tan(2.x) = 4/3, then tan(x) = 1/2 (easy), and then A = 294.(4/3).(1/2) = 196.
If tan(2.x) = 3/4, then tan(x) = 1/3, and then A = 294.(3/4).(1/3) = 73.5

marcgriselhubert
Автор

There is another solution. When you took square root of (a-h)^2, you can get +7 or -7. The difference between two lengths can actually be negative.

dariosilva
Автор

why is 196 not a solution too?
I also realized this is an isosceles triangle, so if AD=a, then DB=35-a and h=588/a
according to Pythagorean Theorem, CB^2 = (35-a)^2 + (588/a)^2
and according to Al Kashi's Law of Cosines = CB^2 = 35^2 + 35^2 - 2*35*35cos(2x) = 2*35^2(1 - cos(2x)) = 2*35^2(1 - a/35)
putting these 2 equations together,
(35-a)^2 + (588/a)^2 = 2*35^2(1 - a/35)
1225 -70a + a^2 + 588^2/a^2 = 2550 - 70a
-1225 + a^2 + 588^2/a^2 = 0
solving for a^2 we get either 784 or 441
therefore, a is equal to their (positive) square root 28 or 21, making h 21 or 28 respectively, but here is the tricky part.
remember that DB = 35-a, it means it can be either 7 or 14 and that matters because is means the area can be either 0.5*7*21 = 73.5 OR 0.5*14*28 = 196!

ABhaim
Автор

There is another solution where a =21 and h =28. This can be done by in previous step you took sqr(a-h) = a2+h2-2ah, instead do Sqr(h-a)=a2+h2-2ah.
Then values will be interchanged.

laxmikantbondre
Автор

Add me to the pile of people who got a 2nd solution. I just used Equation 1 (a*h=588) and Equation 2 (a^2 + h^2 = 35^2) as a system of simultaneous equations, and got two results. (Well, actually I got four results, but two of those involved negative lengths so they were discarded.)

highlyeducatedtrucker
Автор

As ∠CAD = 2x and ∠ADC = 90°, ∠DCA = 90°-2x. As ∠BCD = x and ∠CDB = 90°, ∠DBC = 90°-x. As ∠DCA = 90°-2x and ∠BCD = x, ∠BCA = 90°-x. As ∠ABC = ∠BCA = 90°-x, ∆CAB is an isosceles triangle and AB = CA = 35.

Let AD = a and DC = b.

Triangle ∆ADC:
Aᴛ = bh/2
294 = AD(DC)/2 = ab/2
ab = 2(294) = 588 --- [1]

AD² + DC² = CA²
a² + b² = 35² = 1225 --- [2]

(a+b)² = a² + b² + 2ab
(a+b)² = 1225 + 2(588) = 1225 + 1176
(a+b)² = 2401
a + b = ±√2401 = ±49
a + b = 49 --- [3] (a, b > 0)

(a-b)² = a² + b² - 2ab
(a-b)² = 1225 - 2(688) = 1225 - 1176
(a-b)² = 49
a - b = ±√49 = ±7 --- [4]
(will need to check for a > b and b > a)

a + b = 49 <-- [3]
a + (a-7) = 49 <-- [4+] (for a > b) **
2a = 56
a = 28

b = 49 - 28 = 21

a + b = 49 <-- [3]
a + (a+7) = 49 <-- [4-] (for b > a) **
2a = 42
a = 21

b = 49 - 21 = 28

So (a, b) = (28, 21) and (a, b) = (21, 28) both appear to be valid. We'll solve for both instances.

(a, b) = (28, 21):

AB = AD + DB
35 = 28 + DB
DB = 35 - 28 = 7

Aₜ = bh/2 = 7(21)/2 = 147/2 = 73.5 cm²

(a, b) = (21, 28):

AB = AD + DB
35 = 21 + DB
DB = 35 - 21 = 14

Aₜ = bh/2 = 14(28)/2 = 14(14) = 196 cm²

So the green area equals either 73.5 cm² or 196 cm².

quigonkenny
Автор

Ángulos: A=2Xº→ C=90º-2Xº+Xº=90º-Xº=B→ ABC es triángulo isósceles→ AC=AB=35→ AD=a→ DB=35-a →
a*b=294*2→ a=294*2/b → Si a²+b²=35²→ (294*2/b)²+b²=35²→ b=28→ a=21→ DB=35-21=14→ Área verde =14*28/2=196 cm².
Otra solución válida sería: b=21→ a=28→ 35-28=7→ Área verde =7*21/2=73, 5 cm²
Una comprobación previa hubiese facilitado los cálculos: Si CDA fuese triángulo 3/4/5→ 35=7*5→ a=7*3=21 ; b=7*4=28 y 21*28/2=294 cm²→ Hipótesis correcta→ Solución trivial.
Gracias y un saludo cordial.

santiagoarosam
Автор

answer 196
The triangle is an isosceles since angle B is 90-x (180- 90 + x)
and angle C is also 90-x ( 180- (90 + 2x ) + x)
Hence, line AB = 35
Let's label the triangle to the left n and p
hence np =588 ( 298 *2)
Since the hypotenuse of the triangle to the left = 35, it is possibly a 3-4-5 scaled up by 7
Hence, one of the base = 3 x 7 = 21
and the other 4 x 7 = 28
And since 21 x 28 = 588, then it is a 3-4-5 scaled up by 7
In which the height is 28
Since AB = 35
then the length of the other base = 14 (35 - minus 21)
Hence the area = 28 x 14 x 1/2 or 28 x 7 = 196 Answer

devondevon
Автор

… AB=35…a+h=49; a-h=7 => h=21
[ABC]=½35•21=367.5; [BCD]=367.5-294=73.5

rabotaakk-nwnm
Автор

Let's find the area:
.
..
...
....


The triangle ACD is a right triangle, so we can apply the Pythagorean theorem. Additionally we know the area of this triangle. Therefore we can conclude:

A(ACD) = (1/2)*AD*CD
AC² = AD² + CD²

A(ACD) = (1/2)*AD*CD
AC² ± 2*AD*CD = AD² ± 2*AD*CD + CD²

AC² ± 4*A(ACD) = AD² ± 2*AD*CD + CD² = (AD ± CD)²

AC² + 4*A(ACD) = (35cm)² + 4*(294cm²) = 1225cm² + 1176cm² = 2401cm² = (49cm)²
AC² − 4*A(ACD) = (35cm)² − 4*(294cm²) = 1225cm² − 1176cm² = 49cm² = (7cm)²

(AD + CD)² = (49cm)²
(AD − CD)² = (7cm)²

First case: AD > CD

AD + CD = 49cm
AD − CD = 7cm
⇒ AD = (49cm + 7cm)/2 = 28cm
∧ CD = (49cm − 7cm)/2 = 21cm

tan(2x) = CD/AD = (21cm)/(28cm) = 3/4

tan(2x) = 2*tan(x)/[1 − tan²(x)]
3/4 = 2*tan(x)/[1 − tan²(x)]
3*[1 − tan²(x)] = 8*tan(x)
3 − 3*tan²(x) − 8*tan(x) = 0
tan²(x) + (8/3)*tan(x) − 1 = 0

tan(x) = −4/3 ± √[(−4/3)² + 1] = −4/3 ± √(16/9 + 9/9) = −4/3 ± √(25/9) = −4/3 ± 5/3

Since 0<x<90°, there is only one useful solution:

tan(x) = −4/3 + 5/3 = 1/3

tan(x) = BD/CD ⇒ BD = CD*tan(x) = (21cm)*(1/3) = 7cm

Since the green triangle is also a right triangle, we obtain:

A(BCD) = (1/2)*BD*CD = (1/2)*(7cm)*(21cm) = 73.5cm²

Second case: AD < CD

CD + AD = 49cm
CD − AD = 7cm
⇒ CD = (49cm + 7cm)/2 = 28cm
∧ AD = (49cm − 7cm)/2 = 21cm

tan(2x) = CD/AD = (28cm)/(21cm) = 4/3

tan(2x) = 2*tan(x)/[1 − tan²(x)]
4/3 = 2*tan(x)/[1 − tan²(x)]
4*[1 − tan²(x)] = 6*tan(x)
4 − 4*tan²(x) − 6*tan(x) = 0
tan²(x) + (3/2)*tan(x) − 1 = 0

tan(x) = −3/4 ± √[(−3/4)² + 1] = −3/4 ± √(9/16 + 16/16) = −3/4 ± √(25/16) = −3/4 ± 5/4

Since 0<x<90°, there is only one useful solution:

tan(x) = −3/4 + 5/4 = 2/4 = 1/2

tan(x) = BD/CD ⇒ BD = CD*tan(x) = (28cm)*(1/2) = 14cm

Since the green triangle is also a right triangle, we obtain:

A(BCD) = (1/2)*BD*CD = (1/2)*(14cm)*(28cm) = 196cm²

Summary:
AD > CD ⇒ A(BCD) = 73.5cm²
AD < CD ⇒ A(BCD) = 196cm²

Best regards from Germany

unknownidentity
Автор

STEP-BY-STEP RESOLUTION PROPOSAL (considering that CD < AD as herein depicted):

01) AC = 35 cm.

02) (AD * DC) / 2 = 294 sq cm ; AD * DC = 588 sq cm

03) AD^2 + DC^2 = 35^2 ; AD^2 + DC^2 = 1.225

04) System of Two Equations :

a) AD * DC = 588
b) AD^2 + DC^2 = 1.225

05) Solutions : AD = 28 cm and CD = 21 cm. We could also see that 35 = (7 * 5). And as we have a Pythagorean Triple ( 3 ; 4 ; 5 ) : ( (3 * 7) ; (4 * 7) ; (5 * 7) ) = (21 ; 28 ; 35 ). (21 * 28) = 588

06) tan(2X) = 21 / 28 ; tan(2X) = 3/4

07) tan(2X) = (2tan(X)) / (1 - tan^2(X))

08) 3/4 = (2tan(X)) / (1 - tan^2(X))

09) 3 * (1 - tan^2(X)) = 4 * (2tan(X))

10) 3 - 3tan^2(X) = 8tan(X)

11) 3tan^2(X) + 8tan(X) - 3 = 0

12) tan(X) = Y

13) 3Y^2 + 8Y - 3 = 0

14) Y = - 3 or Y = 1/3 ; tan(X) = - 3 or tan(X) = 1 / 3. Let's consider the Positive Solution:

15) tan(X) = 1 / 3 ; and tan(X) = BD / CD ; BD / CD = 1 / 3 ; BD / 21 = 1 / 3 ; BD = 7

16) Green Area (GA) = (BD * CD) / 2 ; GA = (7 * 21) / 2 ; GA = 147 / 2 ; GA = 73, 5


Therefore,


OUR BEST ANSWER IS:


Green Triangle Area equal to 73, 5 Square Cm.

LuisdeBritoCamacho
Автор

*_Realmente existem duas soluções_*

Pois,

a+h=49 e ah=588, logo

a=28 e h=21 ou a=21 e h=28, logo:

b=7 e h=21 ou b=14 ou h=28. Portanto,

A área ABD pode ser:

7×21/2= *73, 5cm²*

ou

14×28/2= *196cm²*

imetroangola
Автор

rôle symétrique a et h donc 2 possibilités a=28, h =21 ou a=21, h=28
Donc il y a deux cas aire de 73, 5 ou aire de 196

viaducjy
Автор

a and h are exchangeable, so there are two answers

jmcxzcs
Автор

Awesome! φ = 30°; ∆ ABC → AB = AD + BD = a + b; CD = h; BC = k
AC = 35; ADC = 3φ; CAB = 2δ; BCD = δ
ah/2 = 294 → ah = 588 = 12(49) = 3(7)4(7) = 21(28)
AC = 35 = 5(7) → a = 28 → h = 21 → cos⁡(2δ) = 4/5 →
cos⁡(δ) = √((1/2)(1 + cos⁡(2δ))) = 3√10/10 = h/k → k = 7√10 →
area ∆ BCD = (1/2)sin⁡(δ)hk = (1/2)(√10/10)(21)7√10 = 147/2

murdock
Автор

My way of solution ▶
The area of the triangle ΔADC is given as 294 cm²
A(ΔADC)= 294 cm²

194= 1/2* [AD]*35*sin(2x)

[AD]*sin(2x)=

If we apply the sinus theorem for this triangle ΔADC, we get:
sin(90°)/35= sin(2x)/[DC]= sin(90-2x)/[AD]
let's consider the first and third term of this equation:
sin(90°)= 1

1/35= sin(90-2x)/[AD]

sin(90-2x)= sin(90°)*cos(2x) - cos(90°)*sin(2x)
sin(90-2x)= cos(2x)

1/35= cos(2x)/[AD]
[AD]= 35*cos(2x)

if we put this value ([AD]) in Equation-1 we get:
[AD]*sin(2x)= 16, 8

35cos(2x)*sin(2x)= 16, 8
cos(2x)*sin(2x)= 0, 48

if we multiply both sides with 2, we get:
2*cos(2x)*sin(2x)= 0, 96
= sin(4x)

sin(4x)= 0, 96
4x= arcsin(0, 96)
4x= 73, 74°
x= 18, 435°

[AD]= 35*cos(2x)
[AD]= 35*cos(2*18, 435°)
[AD]= 35*cos(36, 87°)
[AD]= 28 cm

sin(2x)/[DC]= sin(90°)/35
[DC]= 35*sin(2x)
[DC]= 35*sin(36, 87°)
[DC]= 21 cm

III) if we apply the sinus theorem for the green triangle ΔDBC we get:
sin(x)/[DB]= sin(90°-x)/[CD]= sin(90°)/[BC]
let's consider the first two terms of this equation:
sin(18, 435)/[DB]= sin(90°- 18, 435°)/[CD]
0, 31622/[DB]= sin(71, 565°)/21

[DB]= 7 cm

Agreen= A(ΔDBC)
Agreen= 1/2*[CD]*[DB]
[CD]= 21 cm
[DB]= 7 cm

Agreen= 1/2*21*7
Agreen= 73, 5 cm²

Birol
Автор

294×2=588=35×a sin 2x, 588+2A=35×(a+b)sin 2x, 2A=35×b sin 2x, cos 2x=a/35, tan x=b/(35 sin

misterenter-izrz