Can you find area of the Blue shaded Rectangle? | (Two Methods) | #math #maths | #geometry

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you find area of the Blue shaded Rectangle? | (Two Methods) | #math #maths | #geometry

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#FindBlueRectangleArea #Rectangle #SemiCircle #GeometryMath #PythagoreanTheorem #ThalesTheorem #SimilarTriangles
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
Andy Math
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

This is awsome 👍, thank you teacher 🙏.

predator
Автор

Note that point E is not at a fixed position on the circumference, the only requirement is that AE =18.
This means that both the radius & dimensions of the rectangle are not fixed.
If Point E coincides with point F, then we have a semicircle of radius 9, and a rectangle of height 9 & width 18.
Hence 9 x 18 = 162.

montynorth
Автор

The tricky part here is that the lengths of the sides of rectangle ABCD are variable but their product is a constant. We can not solve for the value of r because there is a range of values for r which are valid.

jimlocke
Автор

Given that the area of ABDC = AD*(AO+OB) ∴ ABDC=(r)*(r+OB). ∴ (AO+AB)^2+(BE)^2=AE^2 & (OE)^2=(OB)^2+(BE)^2 ∴ 2*(r^2+(r+OB))=324 ∴ ABCD = 162.

TimothyCizadlo
Автор

Let l= length
r= width
Area=lr
EB²=r²-(l-r)²
EB²=18²-l²
r²-l²+2lr-r²=324-l²
2lr=324
lr=162 sq units

rey-dqnx
Автор

Just solved it via Pythagoras: 18^2= (r+OB)^2 + BE^2 and r^2= OB^2 + BE^2 and A= r*(r+OB) => A=r^2+r*OB and 18^2=r^2 +2*r*OB +OB^2 + BE^2; substitute OB^2+BE^2 by r^2 results in 18°2=2(r^2+rOB) and finally substituting A=r^2+r*OB results in 18^2=2*A => A=9*18=162. Makes sense?

ivorauh
Автор

Method using Thales theorem, Pythagoras theorem and similar triangles:
1. Let radius be R.
2. Triangle AEF is right-angled triangle by Thales theorem.
Hence EF^2 = (2R)^2 - 18^2 = 4R^2 - 324 by Pythagoras theorem. (equation 1)
3. Triangles AEF and EBF are similar (AAA)
Hence EF/BF = AF/EF
(EF)^2 = (AF)(BF) = (2R)(BF) (equation 2)
4. From equations (1) and (2)
4R^2 - 324 = (2R)(BF)
4R^2 - 2(R)(BF) = 324
2R^2 - (R)(BF) = 162
4. When DC extends to DC' such that DC' = AF, area of rectangle ADC'F = 2R^2 and
Area of rectangle BCC'F = (R)(BF)
Area of ABCD = area ADC'F - area BCC'F = 2R^2 - (R)(BF) = 162

hongningsuen
Автор

3rd method:
1) Let r=AO, x=OB, h=OE; y=EF;
2) triangle ABE: 18^2=h^2+(r+x)^2 => h^2 = 18^2-(r+x)^2; (1)
triangle OBE : r^2=h^2+x^2; => h^2 = r^2-x^2; (2)
3) compare (1) and (2) => r^2-x^2 = 18^2-(r+x)^2;
r^2-x^2 = 324 - (r^2+2rx+x^2);
r^2-x^2 = 324 - r^2-2rx-x^2;
2r^2+2rx=324;
2*(r^2+rx)=324;
r^2+rx=162
4) Let us observe that Ablue = r^2+rx= 162sq units.

michaelkouzmin
Автор

Let R be the radius OA and (x, y) be the coordinates of B. So B is the intersection of the semi-circle with the circle of radius 18 centered at A. Thus (x, y) must satisfy
1) ( x+R)^2 + y^2 = 18^2 and
2) x^2 + y^2 = R^2
Subtracting 2) from 1) eliminates the x^2 and y^2 terms and simplifies to
(X+R)R = 18^2/2 = 162.

But (x+R)R is the blue area!

yatesfletcher
Автор

the result of the area does not depend on the radius, see line 30:
10 l1=18:l4=13:if l4<l1/2 then else 30
20 print "ungueltige eingabe":end
30 x(3), y(3):goto 60
40
60 gosub 40
70 40:if dg1*dg>0 then 70
80 xs=(xs1+xs2)/2:gosub 40:if dg1*dg>0 then xs1=xs else xs2=xs
90 if abs(dg)>1E-10 then 80
100 print xs;"%";"die gesuchte
110 if masx<masy then mass=masx else mass=masy
120
120 goto 140
130 xbu=x*mass:ybu=y*mass:return
140 x=r*2:y=0:gosub 130:xba=xbu:yba=ybu:for a=1 to
150 gosub 130:xbn=xbu:ybn=ybu:goto 170
160 line xba, yba, xbn, ybn:xba=xbn:yba=ybn:return
170 gosub 160:next a:gcol 12:xba=0:yba=0:for a=1 to 4:ia=a:if ia=4 then ia=0
180 x=x(ia):y=y(ia):gosub 130:xbn=xbu:ybn=ybu:gosub 160:next a:gcol 11
190 xba=0:yba=0:x=xs:y=ys:gosub 130:xbn=xbu:ybn=ybu:gosub 160
12.4615385%die gesuchte flaeche=162
>
run in bbc basic sdl and hit ctrl tab to copy from the results window

zdrastvutye
Автор

I have another method, not necessarily better, but I found the solution.
That's the most important 😆

Let x=BF en y=BE
18²=y²+(2r-x)² --> 324=y²+4r²-4rx+x² --> 324=x²+y²+4r²-4rx

Draw a line from o to E, that's the radius r

r²=OB²+y² --> r²=(r-x)²+y² --> r²=r²-2rx+x²+y² --> 2rx=x²+y²

324=x²+y²+4r²-4rx
324=2rx+4r²-4rx
324=4r²-2rx

162=2r²-rx (divide by 2)

area rectangle=(2r-x)*r=2r²-rx

so, area rectangle=162 square units

batavuskoga
Автор

Area=AB . Radius

Radius=AF/2,

Therefore;

Area= AB . AF/2,

Now, AF= AB + BF

So Area= AB . (AB + BF)/2

Therefore;

Area= (AB^2)/2 + (BF . AB)/2

Therefore;

Twice Area= AB^2 + (BF . AB)

By intersecting chord theory;

EB^2 = AB . BF

So Twice Area= AB^2 + EB^2

By Pythag,
AE^2= EB^2 + AB^2

So AB^2= AE^2 - EB^2

By substitution;

Twice Area=AE^2 - EB^2 + EB^2

Simplifies to;

Twice Area= AE^2

So, Area= (AE^2)/2 = 18^2 / 2

Area= 324 / 2 = 162 units^2

stevetitcombe
Автор

Again, since there are no variables, it means that the blue area is constant, take the special case where the semi-circle is inscribed in the rectangle meaning B, F, and E are all the same points and [AE] is now a diameter of the circle, meaning [AE] = 2 r = 18
This gives r = 9 and the sides of the rectangle as r and 2 r
Area of rectangle = 2 r^2 = 2 * 9^2 = 2 * 81 = 162 square units.

alscents
Автор

|OB|=x, |BE|=y
(r+x)^2+y^2=18^2
x^2+y^2=r^2

2r(r+x)=18^2
A=r(r+x)=9*18=162

povijarrro
Автор

two alternative methods
first one: similarity
tracing perpendicular to chord AE we have right triangle OAH (H is the midpoint of AE) similar to AEB, then
9 : AB = R : 18
area = AB*R = 9*18 = 162
second one: logical
extending AE untill it lies on diameter AF we have that area = radius*diameter=18*9=162

solimana-soli
Автор

Llamaremos G a la proyección ortogonal de O sobreDC. Respetando las condiciones del trazado de la figura propuesta, desplazando E hasta G, el rectángulo original se transforma en un cuadrado de dimensiones r*r y diagonal de longitud 18 ud cuya superficie es igual a la buscada- ---> Área ABCD =18²/2=162 ud².
Gracias y saludos.

santiagoarosam
Автор

Let's use an orthonormal, center O, first axis(OB).
Be OB = c, and R the radius of the circle.
The equation of the circle is x^2 + y^2 = R^2
At point E we have x = c and c^2 + y^2 = R^2,
so E(c, sqrt(R^2 - c^2)
Then VectorAE(c + R, sqrt(R^2 - c^2)
AE^2 = (c + R)^2 + (R^2 - c^2) = 2.R^2 + 2.c.R = 18^2
Meaning that: R.[R + c] = (18^2)/2 = 162
Or that the blue area is 162.

marcgriselhubert
Автор

It is interesting that the radius cancels in the final equation which means the area is independent the radius and any rectangle with the similar configuration (ncluding a square will have the same area.

davesusko
Автор

To me, this appears to be a "minimal information" problem. We cant solve for the radius or the height of the triangle but we know they are dependent on eachother. If I choose h = 0, it will make r = 9. The area of the rectangle would the be 9(18) = 162.

JSSTyger
Автор

Second method is mo bettah!...cuz i take great care to avoid enclosed spaces. Can't think inside a box. 🙂

wackojacko