filmov
tv
MIT 6.S191 (2021): Reinforcement Learning
Показать описание
MIT Introduction to Deep Learning 6.S191: Lecture 5
Deep Reinforcement Learning
Lecturer: Alexander Amini
January 2021
Lecture Outline
0:00 - Introduction
3:17 - Classes of learning problems
6:19 - Definitions
12:33 - The Q function
16:14 - Deeper into the Q function
20:49 - Deep Q Networks
26:28 - Atari results and limitations
29:53 - Policy learning algorithms
33:11 - Discrete vs continuous actions
37:22 - Training policy gradients
44:50 - RL in real life
46:02 - VISTA simulator
47:44 - AlphaGo and AlphaZero and MuZero
55:22 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
Deep Reinforcement Learning
Lecturer: Alexander Amini
January 2021
Lecture Outline
0:00 - Introduction
3:17 - Classes of learning problems
6:19 - Definitions
12:33 - The Q function
16:14 - Deeper into the Q function
20:49 - Deep Q Networks
26:28 - Atari results and limitations
29:53 - Policy learning algorithms
33:11 - Discrete vs continuous actions
37:22 - Training policy gradients
44:50 - RL in real life
46:02 - VISTA simulator
47:44 - AlphaGo and AlphaZero and MuZero
55:22 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191 (2021): Reinforcement Learning
MIT 6.S191 (2022): Reinforcement Learning
MIT 6.S191 (2021): Deep Learning New Frontiers
MIT 6.S191 (2021): Introduction to Deep Learning
MIT Deep Learning 6.S191 Teaser
MIT 6.S191 (2018): Deep Reinforcement Learning
MIT 6.S191 (2021): Recurrent Neural Networks
MIT 6.S191 (2023): The Future of Robot Learning
MIT Introduction to Deep Learning (2023) | 6.S191
MIT 6.S191: Evidential Deep Learning and Uncertainty
MIT 6.S191 (2021): Convolutional Neural Networks
MIT Introduction to Deep Learning (2022) | 6.S191
MIT 6.S191 (2021): Deep Generative Modeling
16. Reinforcement Learning, Part 1
MIT 6.S191 (2020): Generalizable Autonomy for Robot Manipulation
MIT 6.S191: AI for Science
MIT 6.S191: Towards AI for 3D Content Creation
MIT 6.S191 (2023): The Modern Era of Statistics
MIT 6.S191 (2023): Deep Learning New Frontiers
MIT 6.S191: AI Bias and Fairness
MIT 6.S191 (2023): Convolutional Neural Networks
MIT 6.S191: Deep CPCFG for Information Extraction
MIT 6.S191 (2022): Convolutional Neural Networks
MIT 6.S191 (2022): Deep Generative Modeling
Комментарии