A Nice Polynomial System | #algebra #polynomials

preview_player
Показать описание
🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts).
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡

If you need to post a picture of your solution or idea:
a+b+c=10 and a^3+b^3+c^3=3abc+10. ab+ac+bc=?
#systemsofequations #algebra #algebraicexpressions
via @YouTube @Apple @Desmos @NotabilityApp @googledocs @canva

PLAYLISTS 🎵 :

Рекомендации по теме
Комментарии
Автор

Or just use the Newton-Girard identities for symmetric power polynomials, specifically these two:
{1} p3 = p2*e1 - p1*e2 + 3*e3 = p2*e1 - e1*e2 + 3*e3
{2} p2 = p1*e1 - 2*e2 = e1^2 - 2*e2
Combined with the given two equations:
e1 = 10
p3 = 10 + 3*e3
Just substitute these last two, as well as {2}, into {1} to eliminate e1, p2, p3:
10 + 3*e3 = (10^2 - 2*e2)*10 - 10*e2 + 3*e3
10 = 1000 - 20*e2 - 10*e2
e2 = 33

XJWill
Автор

I chose to start with a + b + c = 10 and cube it, ultimately through expanding and substituting arriving at 30(ab + ac + bc) = 990, hence ab + ac + bc = 33:

a^3 + b^3 + c^3 = 10 + 3abc
a + b + c = 10
ab + ac + bc = ?
(a + b + c)^3 = [a + (b + c)]^3 = a^3 + (b + c)^3 + 3a(b + c)(a + b + c)
= a^3 + b^3 + c^3 + 3bc(b + c) + (3ab + 3ac)(a + b + c)
= a^3 + b^3 + c^3 + 3(b^2)c + 3bc^2 + 3(a^2)b + 3ab^2 + 3abc + 3(a^2)c + 3abc + 3ac^2
= a^3 + b^3 + c^3 + 3(a^2)b + 3ab^2 + 3(a^2)c + 3ac^2 + 3(b^2)c + 3bc^2 + 6abc
= 10 + 3abc + 3ab(a + b) + 3ac(a + c) + 3bc(b + c) + 6abc
= 10 + 9abc + 3ab(10 - c) + 3ac(10 - b) + 3bc(10 - a)
= 10 + 9abc + 30ab - 3abc + 30ac - 3abc + 30bc - 3abc
= 10 + 30(ab + ac + bc) = 10^3 = 1000
30(ab + ac + bc) = 990
ab + ac + bc = 33

In other words, "no pain, no gain". At least it worked!

andy_in_colorado
Автор

Bro when are you going to upload in the aplusbi channel?, btw great video😊

sohampine
Автор

a^3+b^3+c^3-3abc is a very famous identity actually so when I saw that I immediately factored

samarthchohan
Автор

Very clever! (Especially that initial factorization.)

mbmillermo
Автор

Can you do some mutli variable calculus problems bring in some concepts like green thermos

luygvkz
Автор

Interesting your algebra is anti-computational.
Processing the general instead of reducing the specific.
Exploring by generation:
a+b+c=10 & (a+b+c)^2 and (a+b+c)^3

carlyet
Автор

Nice. Do'nt be afraid of talking too much, words do'nt cost much😃

yoav
Автор

xyz = ? If ab + bc + ca = 33, xyz = 0 in my calculation...

loflight
welcome to shbcf.ru