Angle Chasing Problem | Find the angle θ | Geometry | Ukrainian Junior Maths Olympiad

preview_player
Показать описание
Find the angle θ | Angle Chasing Problem | Geometry | Ukrainian Junior Maths Olympiad

Join this channel to get access to perks:

MEMBERS OF THIS CHANNEL
••••••••••••••••••••••••••••••••••••••••
Mr. Gnome
Sambasivam Sathyamoorthy
ஆத்தங்கரை சண்முகம்
Εκπαιδευτήρια Καντά
AR Knowledge
堤修一
Sidnei Medeiros Vicente
Mark Ludington
Saunak Swar
Рекомендации по теме
Комментарии
Автор

DEF es equilatero y sus tres ángulos valen 60° 》Ángulos en D: 40/60/80 ; en F, 20/60/100 》Ángulo en A =180-40-100=40》Ángulos en B y C: (180-40)/2=70》Ángulo buscado =180-80-70=30°
Gracias y saludos.

santiagoarosam
Автор

If <CFE=20° and <DFE=60° then <AFD=100° (supplementary angles), therefore <BAC=40°. Since AB=BC then <ABC=<ACB=α. Consequently <ABC+<ACB+40°=2α+40°=180°. <DBE=α=70°. Finally <BDE+α+θ=80°+70°+θ=180°. Result: θ=30°

miguelgnievesl
Автор

Quite simple angle-chasing problem. Still nice. 👍

Bossudeboss
Автор

Knowing angles AFD and BDE helps to work out the DEB=30 without the algebraic thinking. But I do appreciate the mental challenge that you place in front of your viewers😊

SotirakisPeklivanas
Автор

As AB = AC, ∆ABC is an isosceles triangle, so ∠ABC = ∠BCA = α.

As DE = EF = FD, ∆DEF is an equilateral triangle, so ∠DEF = ∠EFD = ∠FDE = 60°.

∠DFA = 180° - 60° - 20° = 100°

∠FAD = 180° - 40° - 100° = 40°

180° - 40° = 2a
α = (180°-40°)/2 = 70°

∠FEC = 180° - 20° - 70° = 90°

θ = 180° - 90° - 60° = 30°

quigonkenny
Автор

angle BAC = angle DAF
=angleCFD-angleADF=20° +60°-40°
= 40°
Hereby
angle ACB = (180°-40°)/2 = 70°
so theta+60°=20°+70°i.e. theta=30°

honestadministrator
Автор

We can find the angle in a shorter and simpler way.

mustafacesur
Автор

Легко вычислим угол A=40°. Тогда углы B и C =70°. И тогда искомый угол равен 180-80-70=30°

СтасМ-ъб
Автор

before i clicked into the video i didn't know that AB=BC, in which case the answer is indeterminate. please do better defining problems.

johnoehrle