Find the angle X | Norway Math Olympiad Problem

preview_player
Показать описание
GET MY EBOOKS
•••••••••••••••••••••••

OTHER CHAPTERS : COMING SOON.....
--------------------------------------------------------------------------------

Join the channel to become a member
Рекомендации по теме
Комментарии
Автор

I'm not sure why you bothered calculating extra angles when we can see that
tan x = b/a, tan 16 = d/a, tan 44 = b/c, tan 48 = d/c
Therefore
tan x tan 48 = tan 16 tan 44
*tan x tan(3*16) = tan 16 tan(60-16)* **
And instead of using a formula that few have seen, we can stick to those that are well known.
Let t = tan 16 = tan A
tan(3A) = tan(A+2A) = (tan A + tan 2A) / ( 1 − tan A * tan 2A)
= (t + 2t/(1−t²)) / (1 − t*2t/(1−t²))
= t(3−t²)/(1−3t²)
tan(60−A) = (tan 60 − tan A) / (1 + tan 60 * tan A)
= (√3−t)/(1+t√3)
Plugging into equation ** above, we get
tan x * t(3−t²)/(1−3t²) = t * (√3−t)/(1+t√3)
tan x = (1−3t²)/(3−t²) * (√3−t)/(1+t√3)
tan x = (1−t√3)(1+t√3)/((√3−t)(√3+t)) * (√3−t)/(1+t√3)
tan x = (1−t√3)/(√3+t)
tan x = (1/√3−t)/(1+(1/√3)t)
tan x = (tan 30 − tan 16) / (1 + tan 30 tan 16)
tan x = tan(30−16) = tan 14
*x = 14*

MarieAnne.
Автор

Math Booster overlooked a second solution: tan(Θ) = tan(Θ + 180°). So, x = 194° is also a solution to tan(14°) = tan(x). However, x is acute in the problem. Therefore x = 194° is an invalid solution to this problem and must be discarded, just as a second root to a quadratic equation must often be discarded. To be complete, this solution should also be presented and then discarded as invalid.

jimlocke
Автор

I drew so many extra lines and semicircles that my whole body became dizzy !

Excellent Solution Amigo : )

oscarcastaneda
Автор

By ratios of the known angles
tan x = tan 44 tan 16 / tan 48
tan 16 = t
By triple angle formula for tan
tan 48 = 3t - t^3 / (1 - 3t^2)
tan x = tan 44 (1-3t^2) / (3 - t^2)
= tan(60 - 16) (1-3t^2) / (3 - t^2)

= [(sqrt(3) - t)/(1 + t sqrt(3))] (1 - t sqrt(3)) (1 + t sqrt(3) /[(sqrt(3) - t)(sqrt(3) + t)]
= (1 - t sqrt(3)) / (sqrt(3) + t)
= (1/sqrt(3) - t) / (1 + t/sqrt(3))
= tan(30 - 16)
= tan(14)
x = 14 deg

pwmiles
Автор

tan(x)=tan(44)×tan(16)÷tan(48)≈0, 249
x=arctan(0, 249)=14°

Pryszczyk
Автор

tan (X) = BO/AO tan(44º) = BO/CO tan(48º) = DO/CO tan (16º) = DO/AO
Tan (48º)/ tan(16º) = AO/ CO because DO/DO =1
Tan (X) /tan (44º) = CO / AO because BO/BO =1
so tan(16º) /tan (48º) = tan (X) / tan(44º) tan(X) = tan (44º) × tan (16º) / tan (48º)
reaching for calculator... approx arctan (0.249) X = 14 º
Now time for the video and the other comments. Thank you.

kateknowles
Автор

I found a video on a polish math olympiad question by Mind Your Decisions, he uses a similar method too.

shaozheang
Автор

Such a long complicated answer. It's 14, 96°C or approximately 15°C.

huss
Автор

How can we presume the formula for tan3A . it's not very popular ( in terms of (60-A))

vcvartak
Автор

The angle values for this figure are not correct. The value 14 does not verify that the sum of the inner angles is equal to 360 degrees. The angles at the center cannot be 90 degrees each

oguzhanbenli
Автор

{16°A+44°B+C48°}=108°ABC {108°ABC+72°D}=180°ABCD 72^108 72^16^44^48 8^9^16^2^2^2^2^2^2^2^3 8^3^2^4^4^1^1^1^1^1^1^1^1^1 2^3^3^1^2^2^2^2 1^1^13^1^1^1^1^2 32(ABCD ➖ 3ABCD+2).

RealQinnMalloryu
Автор

Utilizzando i teoremi del seno risulta tgx=tg44/tg48tg74...x=14

giuseppemalaguti
Автор

Very Beautiful Way Of Approach And Execution Of Very Elementary Fact And Basic Trigonometry Identity. Thank You For Sharing And Keep Up The Good Work.

paulfernandez
Автор

Есть секретная формула:
tg3α=tgα*tg(60°-α)*tg(60°+α). Проверял лично.🙂
α=16°


α=14°

ДмитрийИвашкевич-ят
Автор

At 6.05 I am learning something new:- tan (60º-A) × tan (60º+A) is equal to tan (3A)/ tan (A) This is something nice.

kateknowles
Автор

Wondering how this problem could be solved if we were not using trigonometry, I mean just using elementary geometry.

antoniopedrofalcaolopesmor