filmov
tv
Supernova 1987A, Zoom In
Показать описание
Short video featuring a time lapse zoom in of Supernova 1987A.
SN 1987A was a supernova in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud (a nearby dwarf galaxy). It occurred approximately 51.4 kiloparsecs (168,000 ly) from Earth. This was close enough that it was easily visible to the naked eye and it could be seen from the Southern Hemisphere. It was the closest observed supernova since SN 1604, which occurred in the Milky Way itself. The light from the new supernova reached Earth on February 23, 1987. As the first supernova discovered in 1987, it was labeled “1987A”. Its brightness peaked in May with an apparent magnitude of about 3 and slowly declined in the following months. It was the first opportunity for modern astronomers to study the development of a supernova in great detail, and its observations have provided much insight into core-collapse supernovae. Of special importance, SN1987A provided the first chance to confirm by direct observation the radioactive source of the energy for visible light emissions by detection of predicted gamma-ray line radiation from two of its abundant radioactive nuclei, 56Co and 57Co. This definitively proved the radioactive nature of the long-duration post-explosion glow of supernovae.
SN 1987A was a supernova in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud (a nearby dwarf galaxy). It occurred approximately 51.4 kiloparsecs (168,000 ly) from Earth. This was close enough that it was easily visible to the naked eye and it could be seen from the Southern Hemisphere. It was the closest observed supernova since SN 1604, which occurred in the Milky Way itself. The light from the new supernova reached Earth on February 23, 1987. As the first supernova discovered in 1987, it was labeled “1987A”. Its brightness peaked in May with an apparent magnitude of about 3 and slowly declined in the following months. It was the first opportunity for modern astronomers to study the development of a supernova in great detail, and its observations have provided much insight into core-collapse supernovae. Of special importance, SN1987A provided the first chance to confirm by direct observation the radioactive source of the energy for visible light emissions by detection of predicted gamma-ray line radiation from two of its abundant radioactive nuclei, 56Co and 57Co. This definitively proved the radioactive nature of the long-duration post-explosion glow of supernovae.
Комментарии