Exponential Equation With Double Exponents | How To Solve Exponential Equations | Math Olympiad

preview_player
Показать описание
In this math algebra video, we shall solve an exponential equation with double exponents.
Рекомендации по теме
Комментарии
Автор

Number theorists sees this, writes down "no integer solutions" and moves on.

cmilkau
Автор

You are a real master of math.
Thanks sir

TherealtalktimesphrmdrMagumbas
Автор

Math Olympiad, Solve Double Exponential Equation: 3^(5^x) = 5^(3^x)
Firstly, convert the exponential base 5 into 3 using the logarithmic math method:
Let 3^n = 5, n = log5/log3 = 0.699/0.477 = 1.465; 5 = 3^1.465
3^(5^x) = 5^(3^x) = (3^1.465)^(3^x) = 3^[(1.465)(3^x)]
5^x = (1.465)(3^x), log(5^x) = log[(1.465)(3^x)]
xlog5 = log1.465 + xlog3, x = log1.465/(log5 – log3) = 0.166/0.222 = 0.747
Answer check:
3^(5^x) = 3^(5^0.747) = 3^3.328 = 38.7
5^(3^x) = 5^(3^0.747) = 5^2.272 = 38.7; Confirmed

walterwen
Автор

Math Olympiad, Solve Double Exponential Equation: 3^(5^x) = 5^(3^x)
Another method:
Convert the exponential base 3 and 5 into 10 using the logarithmic math method:
log3 = 0.477; 3 = 10^0.477, log5 = 0.699; 5 = 10^0.699
3^(5^x) = (10^0.477)^(5^x) = 10^[(0.477)(5^x)]
5^(3^x) = (10^0.699)^(3^x) = 10^[(0.699)(3^x)]
(0.477)(5^x) = (0.699)(3^x)
(0.477)(5^x) = (0.477)(10^0.699x) = (0.699)(3^x) = (0.699)(10^0.477x)
(10^0.699x)/(10^0.477x) = 0.699/0.477 = 1.465
(10^0.699x)/(10^0.477x) = 10^(0.699 – 0.477x) = 10^0.222x = 1.465
0.222x = log1.465 = 0.166, x = 0.166/0.222 = 0.747
All calculations can be achieved on a cellphone with a calculator App.

walterwen