filmov
tv
Transforming Images , MIT Computational Thinking Spring 2021 | Lecture 2
Показать описание
Contents
00:00 Welcome
01:25 Announcement: Lectures will be nearly an hour
05:40 Transforming images
06:15 Downsampling/Upsampling
08:55 Linear Combinations (Combining images)
12:20 Element-wise multiplication (broadcast)
14:48 Convex Combinations
18:35 Fun with Photoshop
23:50 Image Filtering (convolutions)
27:17 Definition of convolutions and kernels
28:04 Computer Science: Complexity
28:51 Computer Science: Architectures, GPUs or Graphical Processing Units
30:50 Playing with a few kernels
41:17 Gaussian Filter
47:05 Computer Science: Data Structure: Offset Arrays
49:00 Discrete vs Continuous
50:55 Respect my Boundaries
Transforming Images , MIT Computational Thinking Spring 2021 | Lecture 2
Transformations 2: Composability and Linearity | MIT Computational Thinking Spring 2021 | Lecture 4
Convolutions in Image Processing | Week 1, lecture 6 | MIT 18.S191 Fall 2020
Course Welcome + Intro to Arrays & Images! MIT Computational Thinking Spring 2021 | Lecture 1
Machine Learning, Modeling, and Simulation: Engineering Problem-Solving in the Age of AI
PyTorch in 100 Seconds
Transformations & AutoDiff | Lecture 3 | MIT Computational Thinking Spring 2021
Working With Images in Julia | Week 1, lecture 3 | 18.S191 MIT Fall 2020 | Grant Sanderson
But what is the Fourier Transform? A visual introduction.
MIT 6.S094: Computer Vision
What is Computational Photography? | Machine Learning, Neural Filters, and Image Editing, Part 1
Day in My Life as a Quantum Computing Engineer!
Lecture 4: Computational Illumination: dual photography, relighting - Part 1
But what is a convolution?
Computer Vision Explained in 5 Minutes | AI Explained
Structure | MIT Computational Thinking Spring 2021 | Lecture 7
Senior Programmers vs Junior Developers #shorts
Seam Carving | Week 2, lecture 7 | 18.S191 MIT Fall 2020
How REAL Men Integrate Functions
Modeling with stochastic simulation | MIT Computational Thinking Spring 2021 | Lecture 10
Let's build GPT: from scratch, in code, spelled out.
Tutorial: Computational Models of Human Vision - Part 2
Inverses and Newton method | MIT Computational Thinking Spring 2021 | Lecture 5
What is a Discrete Fourier Transform? | Week 14 | MIT 18.S191 Fall 2020 | Grant Sanderson
Комментарии