filmov
tv
Transformations 2: Composability and Linearity | MIT Computational Thinking Spring 2021 | Lecture 4
![preview_player](https://i.ytimg.com/vi/VDPf3RjoCpY/maxresdefault.jpg)
Показать описание
Contents
00:00 Introduction
01:10 Playing with transformations
18:16 Why learn Julia by doing image processing? Why learn how to do image processing in Julia?
20:28 Last lecture leftovers: Perspective maps, Linear perspective interactive
24:31 Julia style (advanced): Defining vector valued functions
35:44 Functions with parameters
35:56 Linear transformations: a collection
38:05 Nonlinear transformations: a collection
38:41 Composition
39:48 Difference between sin and sin(x)
51:32 Definition of Linear Transformations
54:14 To be discussed in next lecture
Transformations 2: Composability and Linearity | MIT Computational Thinking Spring 2021 | Lecture 4
JuliaCon 2020 | Concatenation and Kronecker products of abstract linear maps | Daniel Karrasch
Inverses and Newton method | MIT Computational Thinking Spring 2021 | Lecture 5
Applied Linear: rank, linear transformation and its standard matrix, 2-7-17, part 2
Composable, Sound Transformations for Nested Recursion and Loops | Kirshanthan Sundararajah
JAX: Accelerated Machine Learning Research via Composable Function Transformations in Python
Intro to JAX: Accelerating Machine Learning research
Transformations & AutoDiff | Lecture 3 | MIT Computational Thinking Spring 2021
Károly Lőrentey - Composable Transformations of Observable Collections
WE MUST ADD STRUCTURE TO DEEP LEARNING BECAUSE...
ICFP Session 2 (Mirror)
Linear Algebra: Feb 19, linear transformations part 1
2024 EuroLLVM - Transform-dialect schedules: writing MLIR-lowering pipelines in MLIR
[Deprecated] Linear Algebra Lecture 2.2 Some Properties of Linear Maps
#12: Scikit-learn 9: Preprocessing 9: Intuition for Power Transform
Enterprise Integration Patterns 2 • Gregor Hohpe • YOW! 2017
re:Clojure 2021 workshop: Linear Algebra with Neanderthal by David Pham
Representations & Geometric Invariant Theory
Two Message Oblivious Evaluation of Cryptographic Functionalities
Applied Linear: linear transformations, standard matrix, left multiplication by matrix map, 2-26-24
Lec 16 Basics of Representation theory.
Concurrency theorems for non-linear rewriting theories (@ICGT2021)
ICFP 2020 Session NY 2
Alexandra Utiralova - Representations of general linear groups in the Verlinde category
Комментарии