filmov
tv
maximum value of y = -5x^2 + 4x - 1
Показать описание
Find the gradient function of -5x^2 + 4x - 1 then equate the gradient function to 0 to find the location of the maximum value
Cowan Academy
y = -5x^2 4x - 1
-5x^2 4x - 1
maximum value of y = -5x^2 4x - 1
maximum value
Рекомендации по теме
0:02:27
maximum value of y = -5x^2 + 4x - 1
0:02:59
How to Find the Maximum or Minimum Value of a Quadratic Function Easily
0:04:54
Determine if a quadratic has a max or min value then find it (mistake)
0:03:31
Find the minimum and maximum values for y = 3 - |sin x -2|. Absolute value
0:03:47
Identifying The Relative Maximum and Minimum Values of a Function
0:12:59
if x+y=8, find the max of x^y (Lambert W function)
0:02:34
Find maximum, minimum values for y = 3 cos x -1.
0:14:18
Finding Local Maximum and Minimum Values of a Function - Relative Extrema
0:11:24
Absolute Maximum and Minimum Values of Multivariable Functions - Calculus 3
0:03:34
Maximum and Minimum Values of Sine and Cosine Functions, Ex 1
0:00:37
Find maximum value of \( y \) where \( y=2 \sin \theta+\sqrt{5} \) \( \cos \theta \)....
0:04:20
Find minimum and maximum values for y = sin x/(sin x +2) over interval [0, 2pi)
0:04:35
Find the maximum value of (x^2)(y^3)
0:09:00
Learning how to find the maximum value of an objective function
0:01:31
The maximum value of y = sin x·cos x is....
0:02:42
`y=x(c-x)` where `c` is a constant. Find maximum value of `y`.
0:06:18
Absolute Maximum and Minimum Values of Multivariable Functions (Part 1)
0:02:27
Find maximum, minimum values for y = - sin (x - pi/3).
0:22:09
L-16| maximum and minimum value of y= ax2+bx+c
0:01:00
y = 2sin(x) - 1 - cos²(x). Find the minimum and maximum value of y without using calculus.
0:17:17
Finding Absolute Maximum and Minimum Values - Absolute Extrema
0:03:12
Find the minimum and maximum values for y = - |sin 2x +3| +4. Absolute value
0:07:52
Easily solve Maximum & Minimum values of the function good example(PART-1)
0:03:39
If x is real, then the maximum value of `y=2(a-x)(x+sqrt(x^2+b^2))`