filmov
tv
Harvard AM205 video 4.12 - PDE-constrained optimization
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. This video briefly introduces PDE-constrained optimization, where the goal is to optimize certain aspects of a solution to a partial differential equation. Since solving partial differential equations can be computationally expensive, this motivates the development of several approaches for rapidly evaluating the gradient of an objective function, such as by using an adjoint equation.
Harvard AM205 video 4.12 - PDE-constrained optimization
Harvard AM205 video 5.9 - Krylov methods: Arnoldi iteration and Lanczos interation
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 4.8 - Steepest descent and Newton methods for optimization
Harvard AM205 video 5.10 - Conjugate gradient method
Harvard AM205 video 0.1 - Introduction
Harvard AM205 video 3.5 - Finite-difference approximations
Harvard AM205 video 1.7 - Underdetermined least squares
Harvard AM205 video 3.1 - Introduction to numerical calculus
Harvard AM205 video 3.2 - Numerical integration
Harvard AM205 video 3.11 - Runge–Kutta methods
Numerical Analysis: QR Factorization
Harvard AM205 video 4.4 - Multivariate root-finding methods
Harvard AM205 video 2.4 - LU factorization
Harvard AM205 video 3.10 - ODE stability
Harvard AM205 video 5.6 - QR algorithm
Harvard AM205 video 5.1 - Introduction to eigenvalue problems
Harvard AM205 video 3.14 - Multistep methods
Harvard AM205 video 3.15 - ODE boundary value problems
Harvard AM205 video 4.9 - Quasi-Newton methods
Harvard AM205 video 3.3 - Composite quadrature rules
Chapter 12: Ordinary Differential Equations (Part 3.5.1 - Stability of Runge Kutta Methods)
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Harvard AM205 video 2.12 - Low-rank approximation
Комментарии