filmov
tv
Harvard AM205 video 4.9 - Quasi-Newton methods
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. The previous video in this series discussed using the Newton method to find local minima of a function; while this method can be highly efficient, it requires the exact Hessian of the function in order to work, which can be expensive and laborious to compute in some cases.
Here we discuss quasi-Newton methods that do not require the exact Hessian. In particular the Brodyen–Fletcher–Goldfarb–Shanno (BFGS) method is discussed and presented in detail. When describing the mathematics behind the BFGS method, the related Broyden root-finding algorithm is also discussed.
Here we discuss quasi-Newton methods that do not require the exact Hessian. In particular the Brodyen–Fletcher–Goldfarb–Shanno (BFGS) method is discussed and presented in detail. When describing the mathematics behind the BFGS method, the related Broyden root-finding algorithm is also discussed.
Harvard AM205 video 4.9 - Quasi-Newton methods
Harvard AM205 video 3.9 - ODE convergence
Harvard AM205 video 3.2 - Numerical integration
Harvard AM205 video 4.3 - Newton and secant methods
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 4.4 - Multivariate root-finding methods
Harvard AM205 video 0.1 - Introduction
Harvard AM205 video 3.7 - ODE initial value problems
Harvard AM205 video 3.11 - Runge–Kutta methods
Harvard AM205 video 3.5 - Finite-difference approximations
Harvard AM205 video 1.7 - Underdetermined least squares
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Harvard AM205 video 4.10 - Sequential quadratic programming
Harvard AM205 video 3.16 - Partial differential equations
ch9 15. Stiffness of ODEs. Scalar ODEs. Wen Shen
Harvard AM205 video 3.15 - ODE boundary value problems
Harvard AM205 video 3.13 - Stiff ODE systems
Harvard AM205 video 3.14 - Multistep methods
Harvard AM205 video 2.5 - LU pivoting and Cholesky factorization
Harvard AM205 video 1.4 - The Lebesgue constant
Harvard AM205 video 2.9 - Householder triangularization
Harvard AM205 video 1.2 - Interpolating discrete data
Harvard AM205 video 1.8 - Nonlinear least squares
The Theory of Runge-Kutta Methods
Комментарии