filmov
tv
Harvard AM205 video 5.10 - Conjugate gradient method
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. This video introduces the conjugate gradient (CG) method, originally introduced by Hestenes and Stiefel in 1952. The conjugate gradient method can be used to solve linear systems for symmetric positive definite (SPD) matrices.
CG only requires matrix multiplication and not direct manipulation of matrix entries, so it is in the family of Krylov subspace methods, and is particularly well suited for sparse SPD matrices. The video introduces the theory begin the CG method, and demonstrates using it to solve the Poisson equation on square grid.
CG only requires matrix multiplication and not direct manipulation of matrix entries, so it is in the family of Krylov subspace methods, and is particularly well suited for sparse SPD matrices. The video introduces the theory begin the CG method, and demonstrates using it to solve the Poisson equation on square grid.
Harvard AM205 video 5.10 - Conjugate gradient method
Harvard AM205 video 4.10 - Sequential quadratic programming
Harvard AM205 video 3.10 - ODE stability
Harvard AM205 video 1.6 - Linear least squares
Harvard AM205 video 4.1 - Introduction to nonlinear equations and optimization
Harvard AM205 video 0.1 - Introduction
Harvard AM205 video 5.4 - Power iteration and inverse iteration
Harvard AM205 video 3.5 - Finite-difference approximations
Harvard AM205 video 3.15 - ODE boundary value problems
Harvard AM205 video 5.5 - Rayleigh quotient
Harvard AM205 video 4.3 - Newton and secant methods
Harvard AM205 video 2.5 - LU pivoting and Cholesky factorization
Harvard AM205 video 4.8 - Steepest descent and Newton methods for optimization
Harvard AM205 video 2.13 - An example of PCA
Harvard AM205 video 1.1 - Introduction to data fitting
Harvard AM205 video 0.4 - Finite-precision arithmetic
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Harvard AM205 video 3.9 - ODE convergence
Harvard AM205 video 0.2 - Sources of error
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 5.2 - Eigenvalue definitions
Harvard AM205 video 4.2 - Root finding: fixed-point iteration
Harvard AM205 video 1.2 - Interpolating discrete data
Harvard AM205 video 4.4 - Multivariate root-finding methods
Комментарии