filmov
tv
Harvard AM205 video 1.4 - The Lebesgue constant
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. This video introduces the Lebesgue constant, which can be used to compare the effectiveness of different choices of interpolation points for constructing polynomial approximations to functions.
Harvard AM205 video 4.1 - Introduction to nonlinear equations and optimization
Harvard AM205 video 1.4 - The Lebesgue constant
Harvard AM205 video 3.1 - Introduction to numerical calculus
Harvard AM205 video 1.1 - Introduction to data fitting
Harvard AM205 video 0.1 - Introduction
Harvard AM205 video 2.1 - Introduction to numerical linear algebra
Harvard AM205 video 5.9 - Krylov methods: Arnoldi iteration and Lanczos interation
Harvard AM205 video 1.2 - Interpolating discrete data
Harvard AM205 video 4.11 - Penalty methods and linear programming
Harvard AM205 video 1.3 - Function approximation
Harvard AM205 video 5.1 - Introduction to eigenvalue problems
Harvard AM205 video 4.9 - Quasi-Newton methods
Harvard AM205 video 4.3 - Newton and secant methods
Harvard AM205 video 5.6 - QR algorithm
Harvard AM 205 video 0.0 - Course logistics (Fall 2020)
Harvard AM205 video 1.5 - Piecewise polynomial interpolation
Harvard AM205 video 4.7 - Equality-constrained optimization
Harvard AM205 video 4.5 - Conditions for a global minimum
Harvard AM205 video 3.8 - One-step integration methods
Harvard AM205 video 5.10 - Conjugate gradient method
Harvard AM205 video 2.13 - An example of PCA
Harvard AM205 video 3.21 - Parabolic PDEs: the heat equation
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 5.4 - Power iteration and inverse iteration
Комментарии