filmov
tv
Harvard AM205 video 2.8 - Gram–Schmidt orthogonalization
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. This video discusses the Gram–Schmidt method for computing the QR decomposition of a matrix. The video also demonstrates Python's functions for computing the QR decomposition, and examines connections between the QR decomposition and linear least squares problems.
Harvard AM205 video 2.8 - Gram–Schmidt orthogonalization
Harvard AM205 video 3.8 - One-step integration methods
Harvard AM205 video 4.9 - Quasi-Newton methods
Harvard AM205 video 4.8 - Steepest descent and Newton methods for optimization
Harvard AM205 video 3.21 - Parabolic PDEs: the heat equation
Harvard AM205 video 3.2 - Numerical integration
Harvard AM205 video 2.4 - LU factorization
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 3.9 - ODE convergence
Harvard AM205 video 2.7 - QR decomposition
Harvard AM205 video 3.16 - Partial differential equations
Harvard AM205 video 4.5 - Conditions for a global minimum
Harvard AM205 video 5.6 - QR algorithm
Harvard AM205 video 0.2 - Sources of error
Harvard AM205 video 3.3 - Composite quadrature rules
Harvard AM205 video 5.10 - Conjugate gradient method
Harvard AM205 video 1.8 - Nonlinear least squares
Harvard AM205 video 1.2 - Interpolating discrete data
Harvard AM205 video 3.11 - Runge–Kutta methods
Harvard AM205 video 2.10 - Givens rotations
Harvard AM205 video 5.1 - Introduction to eigenvalue problems
Harvard AM205 video 2.3 - The residual
Harvard AM205 video 4.12 - PDE-constrained optimization
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Комментарии