Problem_28: Implement Bagging from Scratch using decision trees #ai #coding #ml #google

preview_player
Показать описание
"Welcome to Upgrade2Python, your go-to channel for mastering Python programming! Whether you're a beginner taking your first steps into the world of coding or an experienced programmer looking to level up your skills, Upgrade2Python is here to help you succeed.

Join us as we explore the ins and outs of Python, from basic syntax to advanced techniques. Our tutorials are designed to be clear, concise, and easy to follow, making learning Python fun and accessible for everyone.

Stay tuned for regular updates and new content designed to help you upgrade your Python skills and reach your programming goals. Subscribe now and let's upgrade to Python together!"

ABOUT THIS PROBLEM:

Problem: Implement a Bagging ensemble method from scratch using decision trees as base learners. Apply this ensemble to a classification problem and evaluate its performance.

Hint: Bagging involves training multiple models on different subsets of the data and averaging their predictions.
SOLUTION:
-------------------------------------------------------------------------------------------------------------------------
Problem_28: Implement Bagging from Scratch using decision trees #ai #coding #ml #google

class BaggingClassifier:
def __init__(self, base_estimator=DecisionTreeClassifier(), n_estimators=10):
self.n_estimators = n_estimators

def fit(self, X, y):
for _ in range(self.n_estimators):
X_sample, y_sample = resample(X, y)

def predict(self, X):

# Example usage:
# bagging = BaggingClassifier()

#sample_input ( #datasets )

import numpy as np

# Generate a synthetic dataset
X, y = make_classification(n_samples=100, n_features=20, n_informative=15, n_redundant=5, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize and train the BaggingClassifier
bagging = BaggingClassifier()

# Make predictions

# Evaluate the model
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy:.2f}")

# Sample output
print("Predictions:", predictions)
print("Actual labels:", y_test)

#Sample_output :

Accuracy: 0.85
Predictions: [1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 0.]
Actual labels: [1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0]

-------------------------------------------------------------------------------------------------------------------------

#ML #machine #machinelearning
#samsung #shorts #reels #india #usa #unitedstates #function #facebookreels #youtubeshorts #youtube #youtubevideo #reel
#google #googleinterview #googleplay #microsoft #microsoftinterview
#jpmorgan #jp #python #Upgrade2Python #upgrade2python #facebook #facebookreels #upgrade2python #facebookreels #pythontutorial #u2p

#education #school #learning #englishonline #english #ielts #study #learn #teachers #science #motivation #consciousness #alchemy #grammar #esl #vocabulary #englishteacher #englishlanguage #love #student #knowledge #quotes #universe #cosmos #engineering #businessowners #quoteoftheday #biology #ewaenglish #dicasdeingles

#phrasalwords #instaenglish #vocab #efl #elt #englishhowto #onlineenglish #learnenglishonline #ingilizcekitabi #kitaplar #ydsyokdil #ingilizcedersi #kitap #ingilizceogreniyorum #ingilizcesözler #creativity #physics #art #motivated #business #books #entrepreneur #hustle #startup #success #students #robotics #facts #salahealer9 #ancientknowledge

#follow #instalike #instadaily #followforfollowback #like #followme #like4like #commentforcomment #follow4followback #f4f #likeforlike #igers #likes4like #like4follow #followforfollow #follow4follow #followforlike #follow4like #likes #likeme #instafollow #followback
Рекомендации по теме
welcome to shbcf.ru