filmov
tv
Vision Transformer Tutorial: Multi-Class Classification on Custom Dataset with GPU

Показать описание
In this tutorial, we walk through the complete pipeline for building an image classification model using the Vision Transformer (ViT) architecture on a custom multi-class dataset — fully accelerated by GPU. Whether you're a beginner or a deep learning enthusiast, this hands-on guide covers everything from setup to inference.
🛠️ Virtual environment setup and Required Python packages:
conda create -n torch-env python=3.12
conda activate torch-env
pip install jupyter
pip instlal matplotlib
pip install scikit-learn
pip install seaborn
pip install seaborn
📁 Resources and links:
💻 GitHub Code Repository:
📌 What You’ll Learn
1️⃣ Set up environment and install essential packages
2️⃣ Check GPU availability for training
3️⃣ Load and preprocess your custom dataset
4️⃣ Train the ViT model and validate on the validation set
5️⃣ Evaluate performance (Accuracy, Precision, Recall)
6️⃣ Visualize training curves (loss & accuracy)
7️⃣ Generate and interpret the confusion matrix
8️⃣ Run inference on sample test images
🧠 Presented by:
Dr. Noman
Edith Cowan University, Australia
🔗 LinkedIn Profile
👉 Don’t forget to like, comment, and subscribe for more machine learning and computer vision tutorials!
Tags:
Deep Learning, ResNet, ResNet-50, TensorFlow, Keras, Machine Learning, Image Classification, CNN, Computer Vision, AI Projects, ML Projects, Transfer Learning, Artificial Intelligence, Python, Neural Networks, Data Science, Model Training, Custom Dataset, Model Evaluation, Flower Classification, Deep Learning Tutorial, Smart Tech, OpenCV, AI Research
#VisionTransformer #DeepLearning #ImageClassification #GPU #ViT #CustomDataset #PyTorch #ComputerVision #DeepLearning #VGG16 #AI #MachineLearning #NeuralNetworks #CustomDataset #BinaryClassification #DataScience #cnn #deeplearningart #deeplearningproject #deeplearningtutorial #deeplearningai #deeplear #DeepLearning #inception #AI #MachineLearning #NeuralNetworks #CustomDataset #BinaryClassification #multiclass #DataScience #cnn #deeplearningart #deeplearningproject #deeplearningtutorial #deeplearningai #deeplear #resnet #ml #machinelearningalgorithm #TransferLearning #ComputerVision #ImageClassification #TensorFlow #PyTorch #Keras #AIProjects #MLProjects #DeepLearningModels #ArtificialIntelligence #ModelTraining #DataPreprocessing #ConvolutionalNeuralNetworks #SupervisedLearning #DL #OpenCV #AIResearch #TechForGood #SmartTech #BigData #ConfusionMatrix #AccuracyScore #CrossValidation #TrainTestSplit #DataSplitting #ConvNet #NeuralNet #ModelEvaluation #LossFunction #ActivationFunction #Epochs #Backpropagation #GradientDescent #ValidationSet #TestSet #LearningRate #Overfitting #Underfitting
🛠️ Virtual environment setup and Required Python packages:
conda create -n torch-env python=3.12
conda activate torch-env
pip install jupyter
pip instlal matplotlib
pip install scikit-learn
pip install seaborn
pip install seaborn
📁 Resources and links:
💻 GitHub Code Repository:
📌 What You’ll Learn
1️⃣ Set up environment and install essential packages
2️⃣ Check GPU availability for training
3️⃣ Load and preprocess your custom dataset
4️⃣ Train the ViT model and validate on the validation set
5️⃣ Evaluate performance (Accuracy, Precision, Recall)
6️⃣ Visualize training curves (loss & accuracy)
7️⃣ Generate and interpret the confusion matrix
8️⃣ Run inference on sample test images
🧠 Presented by:
Dr. Noman
Edith Cowan University, Australia
🔗 LinkedIn Profile
👉 Don’t forget to like, comment, and subscribe for more machine learning and computer vision tutorials!
Tags:
Deep Learning, ResNet, ResNet-50, TensorFlow, Keras, Machine Learning, Image Classification, CNN, Computer Vision, AI Projects, ML Projects, Transfer Learning, Artificial Intelligence, Python, Neural Networks, Data Science, Model Training, Custom Dataset, Model Evaluation, Flower Classification, Deep Learning Tutorial, Smart Tech, OpenCV, AI Research
#VisionTransformer #DeepLearning #ImageClassification #GPU #ViT #CustomDataset #PyTorch #ComputerVision #DeepLearning #VGG16 #AI #MachineLearning #NeuralNetworks #CustomDataset #BinaryClassification #DataScience #cnn #deeplearningart #deeplearningproject #deeplearningtutorial #deeplearningai #deeplear #DeepLearning #inception #AI #MachineLearning #NeuralNetworks #CustomDataset #BinaryClassification #multiclass #DataScience #cnn #deeplearningart #deeplearningproject #deeplearningtutorial #deeplearningai #deeplear #resnet #ml #machinelearningalgorithm #TransferLearning #ComputerVision #ImageClassification #TensorFlow #PyTorch #Keras #AIProjects #MLProjects #DeepLearningModels #ArtificialIntelligence #ModelTraining #DataPreprocessing #ConvolutionalNeuralNetworks #SupervisedLearning #DL #OpenCV #AIResearch #TechForGood #SmartTech #BigData #ConfusionMatrix #AccuracyScore #CrossValidation #TrainTestSplit #DataSplitting #ConvNet #NeuralNet #ModelEvaluation #LossFunction #ActivationFunction #Epochs #Backpropagation #GradientDescent #ValidationSet #TestSet #LearningRate #Overfitting #Underfitting
Комментарии