Image classification using Vision Transformer (ViT) with your custom dataset - Full Tutorial! 🚀

preview_player
Показать описание
In this video, we’ll build a Vision Transformer (ViT) from scratch using PyTorch! 🔥

We will Learn how to process image datasets, divide images into patches, and implement a full Transformer-based model for image classification.

You will learn:

✅ Loading and transforming image datasets
✅ Creating patch embeddings for Vision Transformers
✅ Implementing Multi-Head Self-Attention (MSA)
✅ Building a Transformer Encoder for image processing
✅ Training and optimizing a ViT model
✅ Test our model with a test dataset , and predict the result

~~~~~~~~~~~~~~~ recommended courses and books ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~ CONNECT ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~ SUPPORT ME 🙏~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00:00 Introduction
00:55 Installation
04:15 Discover the dataset
06:46 How to load the dataset
15:46 How to split images to patches
30:40 Build and train VIT model
46:10 Test the model (Prediction)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#EranFeit #imageclassification #visiontrasformers
~~~~~~~~~~~~~~ Credits ~~~~~~~~~~~~~
Music by Vincent Rubinetti
Рекомендации по теме
Комментарии
Автор

In vs code how much time does it take to train the epochs

Arjunkrishna-ge