filmov
tv
Precalculus - Powers and Roots of Complex Numbers
Показать описание
Step-by-step tutorial.
Determine the power of a complex number using De Moivre's Theorem.
Determine the root of a complex number using n-th root formula.
De Moivre’s Theorem: [r(cosθ+i sinθ)]^n=r^n (cos nθ+i sin nθ)
The nth root of a complex number:
[r(cosθ+i sinθ)]^(1/n)=r^(1/n) [cos (θ+2kπ)/n+i sin (θ+2kπ)/n], where k=0,1,2,…,n-1.
Determine the power of a complex number using De Moivre's Theorem.
Determine the root of a complex number using n-th root formula.
De Moivre’s Theorem: [r(cosθ+i sinθ)]^n=r^n (cos nθ+i sin nθ)
The nth root of a complex number:
[r(cosθ+i sinθ)]^(1/n)=r^(1/n) [cos (θ+2kπ)/n+i sin (θ+2kπ)/n], where k=0,1,2,…,n-1.