filmov
tv
Rahim Moosa: Around Jouanolou-type theorems
![preview_player](https://i.ytimg.com/vi/Qi9-prozj5U/maxresdefault.jpg)
Показать описание
Abstract: In the mid-90’s, generalising a theorem of Jouanolou, Hrushovski proved that if a D-variety over the constant field C has no non-constant D-rational functions to C, then it has only finitely many D-subvarieties of codimension one. This theorem has analogues in other geometric contexts where model theory plays a role: in complex analytic geometry where it is an old theorem of Krasnov, in algebraic dynamics where it is a theorem of Bell-Rogalski-Sierra, and in meromorphic dynamics where it is a theorem of Cantat. I will report on work-in-progress with Jason Bell and Adam Topaz toward generalising and unifying these statements.
Recording during the meeting "Algebra, Arithmetic and Combinatorics of Differential and Difference Equations" the May 29, 2018 at the Centre International de Rencontres Mathématiques (Marseille, France)
Filmmaker: Guillaume Hennenfent
- Chapter markers and keywords to watch the parts of your choice in the video
- Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
- Multi-criteria search by author, title, tags, mathematical area
Recording during the meeting "Algebra, Arithmetic and Combinatorics of Differential and Difference Equations" the May 29, 2018 at the Centre International de Rencontres Mathématiques (Marseille, France)
Filmmaker: Guillaume Hennenfent
- Chapter markers and keywords to watch the parts of your choice in the video
- Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
- Multi-criteria search by author, title, tags, mathematical area