filmov
tv
Starting Fire in Water - Supercritical Fluid - Science at NASA
Показать описание
A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist. It can effuse through solids like a gas, and dissolve materials like a liquid. In addition, close to the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned". Supercritical fluids are suitable as a substitute for organic solvents in a range of industrial and laboratory processes. Carbon dioxide and water are the most commonly used supercritical fluids, being used for decaffeination and power generation, respectively.
Natural occurrence
The atmosphere of Venus is 96.5% carbon dioxide and 3.5% nitrogen. The surface pressure is 9.3 MPa (93 bar) and the surface temperature is 735 K, above the critical points of both major constituents and making the surface atmosphere a supercritical fluid.
The interior atmospheres of the solar system's gas giant planets are composed mainly of hydrogen and helium at temperatures well above their critical points. The gaseous outer atmospheres of Jupiter and Saturn transition smoothly into the dense liquid interior, while the nature of the transition zones of Neptune and Uranus is unknown. Theoretical models of extrasolar planets 55 Cancri e and Gliese 876 d have posited an ocean of pressurized, supercritical fluid water with a sheet of solid high pressure water ice at the bottom.
CREDIT: National Aeronautics and Space Administration
Support the Channel vie BOOK DEPOSITARY Shopping
Book Depository: Millions of books with free delivery worldwide
Enjoy, Like and Subscribe:)
Natural occurrence
The atmosphere of Venus is 96.5% carbon dioxide and 3.5% nitrogen. The surface pressure is 9.3 MPa (93 bar) and the surface temperature is 735 K, above the critical points of both major constituents and making the surface atmosphere a supercritical fluid.
The interior atmospheres of the solar system's gas giant planets are composed mainly of hydrogen and helium at temperatures well above their critical points. The gaseous outer atmospheres of Jupiter and Saturn transition smoothly into the dense liquid interior, while the nature of the transition zones of Neptune and Uranus is unknown. Theoretical models of extrasolar planets 55 Cancri e and Gliese 876 d have posited an ocean of pressurized, supercritical fluid water with a sheet of solid high pressure water ice at the bottom.
CREDIT: National Aeronautics and Space Administration
Support the Channel vie BOOK DEPOSITARY Shopping
Book Depository: Millions of books with free delivery worldwide
Enjoy, Like and Subscribe:)
Комментарии