1.1 | Differential Equations | Integration By Substitution Methods

preview_player
Показать описание
1.1 | Differential Equations | Integration By Substitution Methods

#differentialequations #calculus #appliedmathematics #engineeringmathematics

In this video, we'll go through three numerical based on integration by substitution methods.

By the end of this video, you'll have a reasonable idea of solving integration by the method of substitution.

So, let us investigate this fascinating topic and broaden our knowledge.

=====================
Formula Sheet

======================

Time Stamp:

00:05 Three Problems
00:13 Methods of Integration - Integration by Substitution (Problem 1)
01:23 Methods of Integration - Integration by Substitution (Problem 2)
02:24 Methods of Integration - Integration by Substitution (Problem 3)

======================
About

The mission of MathandBolt is to create a library of lectures that provide simple explanations for many difficult mathematical and scientific topics.

We believe that any difficult topic can be explained in simple terms.

You can browse and watch our library of videos, and work on tons of practice problems. Be it broadening your knowledge or trying to ace a college course, MnB is there with you.
======================
👉 There are multiple ways you can contribute to the support of my channel 😊
Рекомендации по теме
Комментарии
Автор

... Good day to you, The 3rd integral can also be solved as follows ... INT[1/(e^X + 1)]dX .... rewrite the numerator as follows ... 1 = e^X + 1 - e^X ... INT[ (e^X + 1)/(e^X + 1) - e^X/(e^X + 1) ]dX .... INT[ 1 ]dX - INT[ e^X/(e^X + 1) ]dX ... applying INT[ F'(X)/F(X) ]dX = LN I F(X) I + C on the 2nd integral ... X - LN I e^X + 1 I + C ... fascinating to see more strategies to solve the same problem ... thanking you sir for showing me a new solution path for this integral ... Best regards, Jan-W

jan-willemreens