A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers suc...

preview_player
Показать описание
A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers such that z_1-2 z_2/2-z_1z̅_2 is unimodular and z_2 is not unimodular. Then the point z_1 lies on a :(1) circle of radius 2
(2) circle of radius √(2)
(3) straight line parallel to x-axis
(4) straight line parallel to y-axis

📌 PHYSICS WALLAH OTHER CHANNELS :

📌 PHYSICS WALLAH SOCIAL MEDIA PROFILES :

Рекомендации по теме
Комментарии
Автор

If z1, z2, z3 are three complex numbers such that there exists a complex number z that z1, z2, z3 lie on a circle in the Argand diagram.

chamakgoyal
Автор

Bhai Mai samjha deta agar tu kheta 😂😂😂

HaiderAliKazmi-oubd