Differential Calculus | Applications of Maxima and Minima (Part 2)

preview_player
Показать описание
The following problems are solved in the video:

1. A printed page must contain 60 square cm of printed material. There are to be margins of 5cm on either side and margins of 3cm on the top and bottom. What are the dimensions of the printed area to minimize the amount of paper to be used?

2) A closed box with a square base is to contain 252 cubic feet. The bottom costs $5 per square foot, the top costs $2 per square foot, and the sides cost $3 per square foot. Find the dimensions that will minimize the cost.

Feel free to comment if you have questions or any suggested topics.

"Be completely humble and gentle; be patient, bearing with one another in love." - Ephesians 4:2, NIV
Рекомендации по теме
Комментарии
Автор

Ang malumanay ng boses ni ma'am. Di tulad ng prof ko laging beast mode

mewsicman
Автор

Maam, in problem no. 2 pano po naging 2 x's and 1 h?b And also pano naging x^2h yung V formula? Thank you..

jezrellincuna
Автор

ma'am ask ko lng po sa problem 1. Yung 5 cm po na margin on "either" side, bkit po naging both side yung paglagay ng 5 cm

gny
Автор

nakahanap din ng maganda magturo, thank you mam.

ateradokateashlymae
Автор

Hello po ma'am bakit po ba naging -600/x² yung derivative ng 600/x?

ritchmundtantan
Автор

Ma'am may concern po ako sa number 2, hindi po ba (x - 10)(y - 6) = 60? And the object to minimize is A=(x) (y)

dneseguarin
Автор

How did you come up with these two expressions (y+6) and (x+10)

yamikani
Автор

Maam pano po naging x = 6 yong x^3=216?

johnpaulbarrios
Автор

Maam bakit po ang 5 cm na margin hindi ini add sa y at sa 3 cm margin naman ay hindi sa x?

annpaulineamaro
Автор

salamat po, pero sana sa sunod paki lakas lakas naman ng boses hina po kasi eh pero well explained naman po

jamesrayntorremocha
Автор

How did -6=-600/x^2 turn into x^2 = 600/6

tristanlawrenceybanez