Can you solve for X? | (Triangle) | #math #maths | #geometry

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you solve for X? | (Triangle) | #math #maths | #geometry

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

SolveForX #Area #PythagoreanTheorem #TriangleArea #Perimeter #GeometryMath
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

A = ½ab = ½cx = 1014 cm²
p = a + b + c = 156 cm
a² + b² = c²

a + b = 156 - c
(a + b)² = (156 - c)²
(a² + b²) + 2ab = 156² - 312c + c²
c² + 4(½ab) = 156² -312c + c²
4*1014 = 156² - 312c
312c = 156² - 4*1014
c = 65 cm
x = 31, 2 cm ( Solved √ )

marioalb
Автор

156 = 12(13) = 3(13) + 4(13) + 5(13); ab = 2028 = 3(13)4(13) = 12(169) → c = 5(13) → x = ab/c = (12/5)13

murdock
Автор

Let perpendicular to each other sides ba a and b and hypothenuse be c.
Area of triangle:
ab/2=1014
Perimeter of triangle:
a+b+c=156
Let's make a system:
av/2=1014
a+b+c=156

ab=2028
a+b+c=156

c=√(a²+b²)
a+b+√(a²+b²)=156
a²+b²=(a+b)²-2ab
a+b+√((a+b)²-2ab)=156
Let a+b=t.
t+√(t²-2ab)=156
We also know that ab=2028.
t+√(t²-2•2028)=156
√(t²-4056)=156-t
t²-4056=24336-312t+t²
312t=28392
t=91
a+b=91
91+c=156
c=65
a+b=91
a²+b²=65²

a=91-b
(91-b)²+b²=4225
8281-182b+b²+b²=4225
2b²-182b+4056=0
b²-91b+2028=0
b(1)=39
b(2)=52
a(1)=52
a(2)=39

a=39 b=52 c=65
So we know all sides of triangle.
x is height drawn from a vertex of right angle to the hypotenuse. There exists special formula:
x=ab/c
x=39•52/65=39•4/5=156/5=31, 2

Answer: 31, 2
Pin pls 🙏

AmirgabYT
Автор

BC = a and BA = c. We have a.b = 2028 and a + b +sqrt(a^2 + b^2) = 156. Let's also note P = a.b and S = a + b.
We have P = 2028 and S + sqrt(S^2 - 2.P) = 156, or P = 2028 and S + sqrt(S^2 - 4056) = 156.
Let's focus on the second equation which is equivalent to sqrt(S^2 - 4056) = 156 - S, or to S^2 - 4056 = S^2 -312.S + 24336 for S < 156
We then have -312.S + 24336 = -4056, which gives that S = 91.
S = 91 and P = 2028, so a and c are solutions of x^2 - 91.x + 2028 = 0. Delta = 91^2 - 4.2028 = 169 = 13^2, so a = (91 +13)/2 = 52 and c = (91 - 13)/2 = 39
(or c = 39 and a = 52). Then AC = sqrt(a^2 + c^2) = sqrt(1521 + 2704) = sqrt(4225) = 65.
Finally the double of the area of ABC is a.c or x. AC, so 2028 = x.65, and x = 2028/65 = 156/5.

marcgriselhubert
Автор

1014=13×13×6
156=13×12=13(3+4+6)
1/2(3×4)=6
The sides are 3×13, 4×13, 5×13=39, 52, 65
Sum=39+52+65=156

Area =1/2(65×x)=1014
65x=2028, x=2028/65=156/5=31-2 units

SrisailamNavuluri
Автор

AB=a ; BC=b ; CA=c.
Comprobación previa: (a+b+c)/n=3+4+5=12→ n=13 → a=13*3=39 ; b=13*4=52 ; c=13*5=65 → Perímetro=39+52+65=156 y Área=39*52/2=1014 → La hipótesis de que ABC es un triángulo de lados proporcionales a 3/4/5 es correcta y los valores obtenidos también. → a*b=c*X→ X=2*1014/65=2028/65=156/5 =31, 20 ud².
Gracias y un saludo.

santiagoarosam
Автор

I worked out from the area using ab=2x1014=39x52 and used the perimeter to find c=65 and checked that Pythagoras worked and hence, used xc=2x1014 to find x=31.2. Thank you

HassanLakiss
Автор

I solved finding the radius of the inscribed circle that is Area/semiperimeter
r = 1014/(156/2) = 13
2 AC = Perimeter - 2r = 156 - 26 = 130 (the reason is the two tangent theorem)
then
AC = 130/2 = 65
x is the height of ABC then Area(ABC) = AC*x*1/2 => x = 2*Area/AC
x = 2*1014/65 = 31, 2
it's being a while that I'm showing this alternative method instead of the pythagorean method, on these kind of question about right triangles, but without success...😟

solimana-soli
Автор

Area is approximately x²
x ≈ √A ≈ √1014 = 31, 8 cm aprox.
If you need the exact result, see video

marioalb
Автор

a + c + √ ( a^2 + c^2) = p
a c = 2 A
Again
a + c - √ ( a^2 + c^2)
= 2 a c /( a + c + √ ( a^2 + c^2))
= 4 A / p
Hereby
√ ( a^2 + c^2) = p /2 - 2 A / p

x = 2 A / √ ( a^2 + c^2)
= 2 A /( p /2 - 2 A / p )
In present problem
p = 156 = 13 * 12
A = 1014 = 13 * 7 8 = p * 13 /2
p /2 - 2 A/ p = 13 * 6 - 13 = 13 * 5

Hereby
x = p * 13 / ( 13 * 5) = p /5 = 156 /5

satrajitghosh
Автор

Thanks Sir
That’s very nice
With my respects
❤❤❤❤

yalchingedikgedik
Автор

My way of solution ▶
The triangle ΔABC
[AB]= a
[BC]= b
[CA]= c

P(ΔABC)= 156 length units
a+b+c= 156
a+b= 156-c

A(ΔABC)= 1014 square units
a*b/2= 1014
ab= 2028

(a+b)²= a²+2ab+b²
a²+b²= c²
ab= 2028
2ab= 4056

(156-c)²= c²+4056
24336-312c+c²= c²+4056
312c= 24.336 -4056
c= 65

A(ΔABC)= c*x/2
1014= 65*x/2
x= 2028/65
x= 31, 2 length units

Birol
Автор

xc=ab=2028, a+b+c=156, c^2=a^2+b^2, c^2=(156-c)^2-4056, -156(2c-156)=4056, 156-2c=26, c=65, x=2028/65=31.2.😢

misterenter-izrz
Автор

A quick look at the perimeter tells us this is a Pythagorean triple. In fact it's 13X scale of a 3, 4, 5 triangle. Therefore x=31.2. QED

peteroleary
Автор

x=31.2
a * b = 2028 ( 2* 1014)
2ab = 4056
a+ b+ c = 156
a+ b = 156- c

a^2 + b^2 + 2ab = 156^2 + c^2 - 312c
a^2 + b^2 + 4056 = 156^2 + c^2 - 312c
a^2 + b^2 = 156^2 - 4056 + c^2 -312c
= 20280 + c^2 - 312 c
c^2 =20280 + c^2 -312 c ( Pythagorean a^2 + b^2 = c^2)
312 c = 20280
c = 65

Hence, a + b = 91 ( 156- 65)
Since ab =2028
then, a = 2028/b
then 2028/b + b = 91
2028 + b^2 = 91 b
b^2 -91 + 2028b =0
(b-39)(b-52) = 0
b=39 a = 52 and c = 65

Since ab/2 = 1014 = area
and c=65
let c = p + r
then area = xp/2 + xr/2= 1014
x/2 ( p + r) = 1014 (factor out x/2)
x (p+r) = 2028 (recall c = p+r)
x (c) = 2028

x = 2028/65
x=31.2

devondevon
Автор

Russia. Находим гипотенузу с, которая является основанием треугольника, для нахождения его высоты, через радиус вписанной окружности. r=2A/P=2028/156=13. Выразим гипотенузу с, через стороны a, b и r; с=a+b-2r=a+b-26, а так же через периметр, с=156-(a+b); приравняем правые стороны, и получим, a+b=91; находим с=156-91=65; высоту х находим по формуле площади треугольника, которая рана половине произведения основания на высоту; х=2А/с;;
х=2028/65; х=31, 2.

sergeyvinns
Автор

شكرا لكم على المجهودات
يمكن استعمال
a=BC, b=AC, c=AB
x=2048/b
ac=2048
a+b+c=156
a^2+c^2=b^2
(a+b+c)^2=156^2

b=65
x=2028/65

DB-lgsq
Автор

AB=3k BC=4k CA=5k 3K+4k+5k=156 12k=156 k=13
CA=5k=65
65*x*1/2=1014 65x=2028 x=156/5

himo
Автор

Let's find x:
.
..
...
....


Since ABC is a right triangle, we can apply the Pythagorean theorem. So from the known area A and the known perimeter P we obtain:

AB + AC + BC = P
AB + BC = P − AC
(AB + BC)² = (P − AC)²
AB² + 2*AB*BC + BC² = P² − 2*P*AC + AC²

A = (1/2)*AB*BC ∧ AC² = AB² + BC²

AB² + 2*AB*BC + BC² = P² − 2*P*AC + AB² + BC²
2*AB*BC = P² − 2*P*AC
4*(1/2)*AB*BC = P² − 2*P*AC
4*A = P² − 2*P*AC
2*P*AC = P² − 4*A
⇒ AC = (P² − 4*A)/(2*P) = P/2 − 2*A/P = 156/2 − 2*1014/156 = 78 − 13 = 65

Now we are able to calculate the value of x:

A = (1/2)*AC*h(AC) = (1/2)*AC*BD = (1/2)*AC*x ⇒ x = 2*A/AC = 2*1014/65 = 156/5 = 31.2

Best regards from Germany

unknownidentity
Автор

STEP-BY-STEP RESOLUTION PROPOSAL :

01) AB = a

02) BC = b

03) AC = c

04) a^2 + b^2 = c^2

05) a + b + c = 156 ; a + b = 156 - c

06) a * b = 2 * 1.014 ; a * b = 2.028

07) (a + b)^2 = (156 - c)^2 ; a^2 + b^2 + 2ab = 156^2 - 312c + c^2 ; 2ab = 156^2 - 312c ; 4.056 = 156^2 - 312c ; 312c = 156^2 - 4.056 ; 312c = 24.336 - 4.056 ; 312c = 20.280 ; c= 20.280 / 312 ;

c = 65

08) So : c = 65

09) X * c = (2 * 1.014)

10) X * c = 2.028

11) X * 65 = 2.028

12) X = 2.028 / 65

13) X = 31, 2


Therefore,


OUR ANSWER :

The Length of X equal to 31, 2 Linear Units.

LuisdeBritoCamacho