How to Find and Use Kaggle Datasets in Your Project | Kaggle Datasets for Data Science & ML

preview_player
Показать описание
🚀 **Want to use real-world datasets for your data science and machine learning projects?** Kaggle is the perfect place to find free datasets for analysis, visualization, and model building!

In this tutorial, I’ll show you **how to find, download, and use Kaggle datasets** in your Python projects, whether you're working in **Jupyter Notebook, VS Code, or Google Colab**.

---

### **🔹 What You’ll Learn:**
✅ How to **find and explore datasets** on Kaggle
✅ How to **download Kaggle datasets** manually and using the Kaggle API
✅ How to **load and use Kaggle datasets in Python**
✅ How to **use Kaggle datasets directly in Google Colab and Jupyter Notebook**
✅ How to **analyze, clean, and visualize data**

---

### **🔹 Prerequisites:**
✔️ **Basic Python knowledge** (recommended)
✔️ Installed **pandas, numpy, and matplotlib** (`pip install pandas numpy matplotlib seaborn`)

---

## **Step 1: Find a Dataset on Kaggle**

2️⃣ Search for a dataset (e.g., **Netflix Movies, COVID-19, Titanic, Stock Market Data**)
3️⃣ Click on a dataset to explore:
🔹 Description 📄
🔹 Data files 📂 (CSV, JSON, Excel, etc.)
🔹 Sample visualizations 📊
🔹 Popular Notebooks 📑

---

## **Step 2: Download a Kaggle Dataset (Manually)**

1️⃣ Click **Download** on the dataset page
2️⃣ Extract the ZIP file
3️⃣ Load the dataset into Python using **pandas**

Example for a CSV file:

```python
import pandas as pd

# Load dataset

# Display first 5 rows
```

---

## **Step 3: Download a Kaggle Dataset Using Kaggle API**

Kaggle provides an API for easy dataset access.

### **🔹 Setup Kaggle API:**
2️⃣ Scroll to **API** and click **Create New API Token**
4️⃣ Move it to `~/.kaggle/` (Linux/Mac) or `C:\Users\YourUser\.kaggle\` (Windows)

### **🔹 Install and Use Kaggle API:**
```bash
pip install kaggle
```

```bash
kaggle datasets download -d dataset-owner/dataset-name
```

Example:

```bash
kaggle datasets download -d zynicide/wine-reviews
```

Extract and use it in Python:
```python
import pandas as pd
import zipfile

# Extract ZIP

# Load CSV
```

---

## **Step 4: Load a Kaggle Dataset in Google Colab**

2️⃣ Run the following command to enable Kaggle API in Colab:

```python
!pip install kaggle
```

```python
```

4️⃣ Download the dataset:

```python
!kaggle datasets download -d zynicide/wine-reviews
```

5️⃣ Extract and use in Colab:

```python
import zipfile

```

---

## **Step 5: Analyze and Visualize Kaggle Datasets**

Once the dataset is loaded, you can clean and visualize the data!

🔹 **Check for missing values:**
```python
```

🔹 **Basic statistics:**
```python
```

🔹 **Visualize data with Matplotlib & Seaborn:**

```python
import seaborn as sns

# Histogram
```

---

## **Step 6: Use Kaggle Datasets in Jupyter Notebook or VS Code**

If you're using **Jupyter Notebook or VS Code**, follow the **manual download** or **Kaggle API** method to get the dataset, then load it using `pandas`.

---

## **Next Steps:**
📌 **How to Analyze Data with Pandas** → [Watch Now]
📌 **Best Kaggle Tips for Beginners** → [Watch Now]
📌 **How to Build a Machine Learning Model with Kaggle Data** → [Watch Now]

---

### **👍 Like, Share & Subscribe!**
If this tutorial helped you, **LIKE**, **SHARE**, and **SUBSCRIBE** for more Kaggle & Data Science content!

💬 Have questions? Drop them in the **comments** below!

---

### **🔹 Hashtags:**
#Kaggle #DataScience #MachineLearning #Python #KaggleDatasets #AI #BigData #DeepLearning #DataAnalytics #KaggleAPI
Рекомендации по теме
Комментарии
Автор

It was useful for us who is just starting the journey of data scientist, Thank you ma'am

xuanwu
Автор

I was bit confused and didn't know to get the csv file... But this video helped a lot thank you so much <3

aer
Автор

Newby here! Thanks for the video! You lost me when you started talking about ways to download. I will be doing research 🙏🏾

TheVEPrice
Автор

Thanks for informative video, using API saves time from downloading and uploading the dataset.

sye
Автор

Grazie per il video informativo, ma direi che si dovrebbe porre maggiore enfasi sul day trading, poiché è meno influenzato dalla natura imprevedibile del mercato. Ho guadagnato oltre 6, 7 BT C dal day trading e ho iniziato con solo 0, 9 BT C in sei settimane con le intuizioni e i segnali di Edward Micheal. È stato all'avanguardia in altre analisi. Si è evoluto negli anni fino a diventare il migliore.

bakerskater
visit shbcf.ru