Can you find area of the Green shaded Quadrilateral? | (Square) | #math #maths | #geometry | #viral

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you find area of the Green shaded Quadrilateral? | (Square) | #math #maths | #geometry | #viral

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#FindGreenArea #Square #Quadrilateral #GeometryMath #PythagoreanTheorem
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

Great video sir🎉Thank you so much🙋🏻‍♂️

BBMathTutorials
Автор

A nice problem. You need to see that the triangles are similar. ,

stanbest
Автор

AB=BC=CD=DA=3a
(2a)²+(3a)²=(2√13)² 13a²=52 a=2 3a=3*2=6
AF=a*2/3=2a/3

Greeen shaded area = ABCD - (AEF + DCE) = 6*6 - (2*4/3*1/2 + 4*6*1/2) = 36 - 4/3 - 12 = 24 - 4/3 = 72/3 - 4/3 = 68/3

himo
Автор

a=2
Side of square is 6
AFE is similar to EDC
Scale factor is 1/3
Area of EDC = 1/2*4*6=12
Area of AFE = 12*(1/3)^2=4/3
So the green area is = 6^2-12-4/3

Mediterranean
Автор

Hey pre math can you make a video about the cpncept similarity and congruency

shalinisuryavanshi
Автор

(2a)^2 + (3a)^2 = (2✓13)^2
13a^2 = 4(13)
a = 2
The two white triangles are similar.
Area = square area - combined area of the two triangles = (3a)^2 - (2a)(3a)/2 - a(2a/3)/2 = (9 - 3 - 1/3)a^2 = (6 - 1/3)(4) = 24 - 4/3 = 23 - 1/3 = 22 + 2/3

cyruschang
Автор

As ABCD is a square, all side lengths are equal and all internal angles are 90°. Therefore, DC = CB = BA = AD = a+2a = 3a.

Let ∠DCE = α and ∠CED = β, where α and β are complementary angles that sum to 90°. As ∠FEC = 90°, then ∠AEF = 180°-90°-β = 90°-β = α. As ∠FAE = 90°, then ∠EFA = β. Therefore, by AAA, ∆EDC and ∆FAE are similar triangles.

Triangle ∆EDC:
ED² + DC² = CE²
(2a)² + (3a)² = (2√13)²
4a² + 9a² = 52
13a² = 52
a² = 52/13 = 4
a = √4 = 2

Triangle ∆FAE:
FA/AE = ED/DC
FA/a = 2a/3a = 2/3
FA = 2a/3 = 2(2)/3 = 4/3

The area of green quadrilateral BFEC is equal to the area of square ABCD minus the areas of the two triangles ∆FAE and ∆EDC.

Green quadrilateral BFEC:
Aɢ = (3a)² - a(2a/3)/2 - 3a(2a)/2
Aɢ = 9a² - a²/3 - 3a² = (27-1-9)a²/3
Aɢ = 17a²/3 = 17(2)²/3 = 68/3 = 22.666... sq units

quigonkenny
Автор

(2a)² + (3a)² = (2√13)²
4a² + 9a² = 4 * 13
13a² = 4 * 13
a² = 4
a = 2

3a : 2a = a : x
3a * x = 2a²
x = 2a² / 3a = 2 * 4 / 6 = 4/3

A(green) = (3a)² - 1/2 (2a * 3a + 4/3 a)
A(green) = 36 - 1/2 (6 * 4 + 4/3 * 2)
A(green) = 36 - 1/2 (24 + 8/3)
A(green) = 36 - (12 + 4/3)
A(green) = 36 - (36/3 + 4/3)
A(green) = 36 - 40/3 = 108/3 - 40/3 = 68/3 ≈ 22.67 square units

Waldlaeufer
Автор

*In EDC: EC^2 = ED^2 + DC^2, so 52 = 4.a^2 + 9.a^2 =13.a^2, so a^2 = 4 and a = 2.
*Area of the big square: (3.a).(3.a) = 9.a^2 = 9.4 = 36
*Area of triangle EDC: (1/2).(2.a).(3.a) = 3.a^2 = 12
*TrianglesaEDC and AFE are similar (same angles), and AE/DC = 1/3 . The side lengths of AFE are 1/3 of the side lengths of EDC, so its area is 1/9 of the area of EDC, so it is 12/9 = 4/3.
*Finallt the green area is 36 = 36 - 12 - 4/3 = 68/3.

marcgriselhubert
Автор

Observing the lower triangle, perhaps a can be calculated by (2a)^2 + (3a)^2 = (2*sqrt(13)^2
4a^2 + 9a^2 = 52
13a^2 = 52
a^2 = 4
a=2
Therefore, the square is 6*6 = 36 un^2
AFE and EDC are similar
Calculate AF: a/(AF) = 6/4
2/(AF) = 6/4
The usual is to cross multiply, but a quick inspection reveals that AF is one third of 4
This gives the relevant sides of the small triangle as 2 and 4/3, and the larger one as 6 and 4
The triangles areas are 4/3 and 12 un^2
Subtract those from 36 for 22 and 2/3.
A decimal approximation is 22.67 un^2

Yes, we went the same route, except for the very end part.
I managed to do much of this one in my head and only wrote some parts to verify it.

MrPaulc
Автор

(2a)²+(3a)²=(2√13)²→ a²=4→ a=2→ Razón de semejanza entre triángulos blancos, s=a/3a=1/3→ Razón entre áreas =s²=1/9→ Área verde =36-12-(12/9)=68/3 ud².
Gracias y saludos.

santiagoarosam
Автор

İt is easy. This shape is square. So DC= 3a. Then EC²= ED²+DC². 52=9a²+4a². 52=13a². So a²=4. Then a=2. Then we have to find AF. SO We have to set resemblance with ADC triangle with AEF triangle. After then we can find what shaded area is.

erdemakca
Автор

STEP-BY-STEP RESOLUTION PROPOSAL :

01) (2a)^2 + (3a)^2 = (2*sqrt(13))^2 ; 4a^2 + 9a^2 = 4 * 13 ; 13a^2 = 52 ; a^2 = 52/13 ; a^2 = 4 ; (Negative Solution : a = - 2) or a = 2
02) Square [ABCD] Side = 3 * (2) = 6 lin un
03) Square [ABCD] Area (SA) = 6 * 6 ; SA = 36 sq un
04) AE = 2 lin un
05) DE = 4 lin un
06) Angle (FEC) = 90º
07) Triangle [CDE] Area = (3a * 2a) / 2 = (6 * 4) / 2 = 24 / 2 = 12 sq un
08) Triangles [AEF] and Triangle [CDE] are Similar.
09) AF / a = 2a / 3a ; AF / 2 = 4 / 6 ; AF / 2 = 2 / 3 ; AF = 4/3 lin un ; AF ~ lin un
10) Triangle [AEF] Area = (2 * 4/3) / 2 = 4/3 sq un
11) Green Shaded Area (GSA) = 36 - (12 + 4/3) ; GSA = 36 - 40/3 ; GSA = (108 - 40) / 3 ; GSA = 68 / 3 sq un ; GSA ~ sq un

Therefore,


OUR BEST ANSWER is :

Green Shaded Area is equal to 68/3 Square Units or approx. equal to 22, 67 Square Units.


P.S. - Best Regards from The Islamic Institute of Mathematical Sciences.

LuisdeBritoCamacho
Автор

Let's find the area:
.
..
...
....


The side length of the square is obviously s=AE+DE=a+2a=3a. By applying the Pythagorean theorem to the right triangle CDE we obtain:

CD² + DE² = CE²
(3a)² + (2a)² = (2√13)²
9a² + 4a² = 2²*13
13a² = 2²*13
a² = 2²
⇒ a = 2

Now let's have a look at the interior angles of the right triangles CDE and AEF:

CDE: ∠CDE = 90° ∠DCE = α ∠CED = β
AEF: ∠EAF = 90° ∠AEF = α ∠AFE = β

Therefore these two triangles are similar and we can conclude:

AF/AE = DE/CD
AF/a = (2a)/(3a)
⇒ AF = 2a/3

Now we are able to calculate the area of the green quadrilateral:

A(BCEF) = A(ABCD) − A(CDE) − A(AEF) = s² − (1/2)*CD*DE − (1/2)*AE*AF
A(BCEF) = (3a)² − (1/2)*(3a)*(2a) − (1/2)*a*(2a/3) = (9 − 3 − 1/3)a² = (18/3 − 1/3)a² = 17a²/3 = 17*2²/3 = 68/3

Best regards from Germany

unknownidentity
Автор

I do this developing fantasy baseball diamonds for video games for my non Euclidean universes. Mo fun livin hyperbolicly. 🙂

wackojacko
Автор

Solution:

a/EF = 3a/2√13
EF . 3a = a . 2√13
EF = a . 2√13/3a
*EF = 2√13/3*

3a/2a = a/AF
3a . AF = 2a . a
AF = 2a . a/3a
AF = 2a/3

A1 = ½ (a. 2a/3)
A1 = a²/3

A2 = ½ 2a . 3a
A2 = 3a²

ASquare = 3a . 3a
ASquare = 9a²

Green Shaded Area (GSA) = ASquare - (A1 + A2)
GSA = 9a² - (a²/3 + 3a²)
GSA = 9a² - (a²/3 + 3a²)
GSA = 9a² - 10a²/3
GSA = 17a²/3 ... ¹

(2a)² + (3a)² = (2√13)²
4a² + 9a² = 52
13a² = 52
a² = 52/13
a² = 4
a = 2

GSA = 17 (2)²/3

GSA = 68/3 Square Units

ou

GSA ~= 22, 67 Square Units

sergioaiex
Автор

My way of solution is ▶
consider the ΔEDC:
∠EDC= 90°
∠DCE= α
∠CED= β

α+β = 90°

consider the ΔFAE:
∠CED= β ⬆
∠FEC= 90°

∠AEF= α
∠FAE= 90°
∠EFA= β

ΔEDC ~ ΔFAE
DC/AE= CE/EF= ED/FA
DC= 3a
ED= 2a
AE= a

3a/a= 2a/x
x= 2a/3

if we apply the Pythagorean theorem for the ΔEDC
(2a)²+(3a)²= (2√13)²
4a²+9a²= 4*13
13a²= 52
a²= 4
a= 2

Agreen= (3a)²-A(ΔEDC) - A(ΔFAE)
Agreen= 9a² - 6a²/2 - a*(2a/3)*(1/2)
Agreen= 9a²-3a²- 2a²/6
Agreen= 6a² - a²/3
Agreen= 6*2²- 2²/3
Agreen= 24- 4/3
Agreen= 68/3
Agreen ≈ 22, 7 square units

Birol