France | A Nice Algebra Problem | Math Olympiad

preview_player
Показать описание
math olympiad
olympiad math
math olympiad question
math olympiad questions
math olympiad problem
math olympiad problems
olympiad math problems
algebra olympiad problems
math
maths
algebra
algebra problem
nice algebra problem
a nice algebra problem
equation
exponential equation
a nice exponential equation
radical equation
a nice radical equation
math tricks
imo
Find the value of x?
How to solve How to solve x^2 - 1 = √(x + 1)

In this video, we'll show you How to Solve Math Olympiad Question A Nice Algebra Problem x^2 - 1 = √(x + 1) in a clear , fast and easy way. Whether you are a student learning basics or a professtional looking to improve your skills, this video is for you. By the end of this video, you'll have a solid understanding of how to solve math olympiad exponential equations and be able to apply these skills to a variety of problems.
#matholympiad #maths #math #algebra
Рекомендации по теме
Комментарии
Автор

We can define the Domain of x as followed:
x + 1 ≥ 0 and x^2 - 1 ≥ 0 => x ≥ -1 and (x ≥ 1 or x ≤ -1 ) => x = -1 or x ≥ 1
8:43 x = 0, (1 - √5)/2 can be discarded immediately.

허공
Автор

Let y = sqrt(x+1) then y>0

y^2 = x+1
x^2 - 1 = (x+1)•[(x+1) - 2]
=(y^2)•(y^2 - 2) = (y^2 - 1)^2 - 1

(y^2 - 1)^2 - 1 = y
(y^2 - 1)^2 = y + 1

(y +1)•[(y - 1)^2] = 1
[(y - 1) + 2]•[(y - 1)^2] = 1
(y - 1)^3 + 2•[(y - 1)^2] = 1

林進生-kl
Автор

Y=Sqrt(X+1), Y>=0, X>=-1, |X|>=0, Y^2=X+1, X^2-1=Y, X^-Y^2-1=Y-X-1, (X-Y)(X+Y+1)=0, X+Y+1>0, X=Y, X^2=X+1, X^2-X-1=0, X=(1+Sqrt (5))/2, Or X=(1-Sqrt (5))/2, refuse

davidshen
Автор

x^2-1>=0, x+1>=0, x^2>=1, x>=-1
(x-1)(x+1)=√x+1, √x+1=a so
(x-1)a^2=a, (x-1)a^2-a=0
a[(x-1)a-1]=0, a=0 x=-1 acceptable
(x-1)a-1=0, a=1/x-1, √x+1=1/x-1
(√x+1=1/x-1)^2, x^3-x^2-x=0
x(x^2-x-1)=0, x=0 unacceptable
x^2-x-1=0 , x=(1+√5)/2 acceptable

فیروزاهنگری
Автор

x² - 1 = √(x + 1) → where: (x² - 1) ≥ 0 → x ⋲ ]- ∞ ; - 1] U [1 ; + ∞[
[x² - 1]² = [√(x + 1)]²
x⁴ - 2x² + 1 = x + 1
x⁴ - 2x² - x = 0
(x⁴ - 2x²) - x = 0
(x² - 1)² - 1 - x = 0
(x² - 1)² - (x + 1) = 0
[(x + 1).(x - 1)]² - (x + 1) = 0
(x + 1)².(x - 1)² - (x + 1) = 0
(x + 1).[(x + 1).(x - 1)² - 1] = 0
(x + 1).[(x + 1).(x² - 2x + 1) - 1] = 0
(x + 1).[x³ - 2x² + x + x² - 2x + 1 - 1] = 0
(x + 1).[x³ - x² - x] = 0
x.(x + 1).(x² - x - 1) = 0

First case: x = 0 → rejected, because the condition

Second case: (x + 1) = 0
x + 1 = 0
x = - 1

Third case: (x² - x - 1) = 0
x² - x - 1 = 0
Δ = (- 1)² - (4 * - 1) = 1 + 4 = 5
x = (1 ± √5)/2
First possibility:
x = (1 - √5)/2 → rejected, because the condition
Second possibility:
x = (1 + √5)/2

Solution = { - 1 ; (1 + √5)/2 }

key_board_x
Автор

Минус один, решил за 30 секунд подбором

ВалерийВолков-сб
welcome to shbcf.ru