France | A Nice Algebra Problem | Math Olympiad

preview_player
Показать описание
math olympiad
olympiad math
math olympiad question
math olympiad questions
math olympiad problem
math olympiad problems
olympiad math problems
algebra olympiad problems
math
maths
algebra
algebra problem
nice algebra problem
a nice algebra problem
equation
exponential equation
a nice exponential equation
radical equation
a nice radical equation
math tricks
imo
Find the value of x?
How to solve √x-1 + √x+2 = 3

In this video, we'll show you How to Solve Math Olympiad Question A Nice Radical Equation √x-1 + √x+2 = 3 in a clear , fast and easy way. Whether you are a student learning basics or a professtional looking to improve your skills, this video is for you. By the end of this video, you'll have a solid understanding of how to solve math olympiad exponential equations and be able to apply these skills to a variety of problems.
#matholympiad #maths #math #algebra
Рекомендации по теме
Комментарии
Автор

Sqrt(x-1)=3-sqrt(x+2), square both sides, separate terms with x on one side, square both sides, x=2. Much quicker.

digbycrankshaft
Автор

3:59 Mutiply folloeing at two side
(x+2)^1/2 -(x-1)^1/2

3=3* ((x+2)^1/2-(x-1)^1/2)

((x+2)^1/2-(x-1)^1/2'= 1
2(x+2)^1/2 = 4
x + 2 = 4
x = 2

CharlesChen-elot
Автор

=> √(x - 1) + √(x + 2) = 3 ---(1), multiplying √(x - 1) - √(x + 2) to both sides
=> [√(x - 1) + √(x + 2)] * [√(x - 1) - √(x + 2)] = 3 * [√(x - 1) - √(x + 2)]
=> (x - 1) - (x + 2) = -3 = 3[√(x - 1) - √(x + 2)] => √(x - 1) - √(x + 2) = -1 ---(2)
=> (1) + (2) => 2√(x - 1) = 2 => √(x - 1) = 1 => x = 2

허공
Автор

√(x-1)+√(x+2)=3
3-√(x-1)=√(x+2)

Domain: 1≤x≤10

3-√(x-1)=√(x-1+3)

Let y=x-1

3-√y=√(y+3)

Let z=√y, z²=y

3-z=√(z²+3)
z²-6z+9=z²+3
9-6z=3
-6z=-6
x=1
√y=1
y=1
x-1=1
x=2 ❤

ChavoMysterio
Автор

let A= root x-1, B= root AA-BB=(A+B)(A-B)=-3 -> A-B=-1, A=1, B=2

seedseed
Автор

A=Sqrt(X+2), B=Sqrt(X-1),A+B=3, A^2-B^2=3, A-B=1,A=2,B=1,X=2。

davidshen
Автор

let u=x-1 --> x+2=u+3, (V(u+3))^2=(3-Vu)^2, u+3=9-6Vu+u, 6Vu=6, Vu=1, (Vu)^2=1^2, u=1, x-1=1, solu, x=2,

prollysine
Автор

[√(x + 2)]² = [3 – √(x – 1)]², x + 2 = 9 – 6√(x – 1) + (x – 1), 6√(x – 1) = 6
√(x – 1) = 1, x – 1 = 1² = 1; x = 2

walterwen
Автор

My solution

√(x-1)+√(x+2)=3
√(x-1)+√(x+2)=1+2
√(x-1)+√(x+2)=√(1)+√(4)
Modifying the structure of RHS
√(x-1)+√(x+2)=√(2-1)+√(2+2)
Now comparing the structure of LHS & RHS
We get,
x=2

LITHICKROSHANMS-gwlx
Автор

Math Olympiad?
What's the "olympiadness" of the problem? It's solvable even without a pen.

dqjfrue
Автор

(x-1)½+(x+2)½=3; make it:
u=(x-1)½ and v=(x+2)½
then,
u+v=3
(u+v)(u-v)=3(u-v)
u²-v²=3(u-v);
but u²=(x-1) and v²=x+2
then,
(x-1)-(x+2)= 3(u-v)
-3=3(u-v)
u-v=-1

make the sistem:
u+v=3
u-v=-1

then,
2u=2
therefore,
u=1 and v=2

But u=(x-1)½ and v=(x+2)½
then,
(x-1)½=1 and (x+2)½=2
therefore,
x-1=1 => x=2
and
x+2=4 =>x=2

therefore,
x=2 is a solution.

/ /
simplify one term way:
(x-1)½+(x+2)½=3; u=x+2 =>x-1=u-3
(u-3)½+u½=3
(u-3)½=3-u½
(u-3)½=(-1)[(u½)-3]
[(u-3)½]²={(-1)[(u½)-3]}²
u-3=(-1)²[(u½)-3]²
u-3=[(u½)-3]²
u-3=(u½)²-2*(u½)*3+3²
u-3=u-6(u½)+9
6(u½)=12
u½=2
u=4
but u=x+2; then 4=x+2.
therefore x=2

/ /
cheating way: (knowing √1=1)
(x-1)½+(x+2)½=3
when x-1=1, then (x-1)½=1 because
√1=1. So,
1+√(2+2)=3
1+√4=3
1+2=3 true.
therefore x=2 is a solution.

/ /
algebrical way:
(x-1)½+(x+2)½=3; make it:
a=(x-1)½ and b=(x+2)½
then
a+b=3
b = 3-a
b(3+a) = (3-a)(3+a)
3b+ab=3²-a²; but 3=a+b
(a+b)b+ab=9-a²
ab+b²+ab=9-a²
2ab=9-(a²+b²)
2√(x-1)√(x+2)=9-[(x-1)+(x+2)]
2√[(x-1)(x+2)]=9-[2x+1]
2√[x²+(-1+2)x+(-1)(2)]=9-2x-1
2√[x²+x-2]=8-2x
2(x²+x-2)½=2(4-x)
(x²+x-2)½=(4-x); make it:
c=(x²+x-2)½ and b=(4-x)
c=d
c*d=d*d
cd=d², but c=d; then cd=c²
therefore,
c²=d²
[(x²+x-2)½]²=(4-x)²
x²+x-2=(4²-2*4*x+x²)
x²+x-2=(16-8x+x²)
x²+(x-2)=x²+(16-8x)
(x-2)=(16-8x)
(x-2)=8(2-x)
(x-2)=8(-1)(x-2)
(1)(x-2)=(-8)(x-2); z=x-2
[1)*z=(-8)*z is true only if: z=0
then, x-2=0
x=2 is a solution.

ConradoPeter-hlij
join shbcf.ru