India | A Nice Radical Equation

preview_player
Показать описание
Hello, here is another video for us to learn from.

Subscribe to our channel for more videos

Comment and share via the link;

Thanks to you all

#maths #education #educational #educationalvideo #educationalvideos #educationalvideos #educationmatters #educationalcontent #trending #trendingmaths #trendingvideo #trendingstatus #mathematics #mathstricks #math #mathematicsclasses #mathematic #solver #school #solution #solutionsmaster #solutions #sol #matholympiad #mathshorts #mathproblem #mathpuzzle #mathproblems #how #howto #onlineclasses #online #onlinelearning #common #commonentranceexam #testy #top #top10 #toptrending #onlinemaths #onlineclass #onlinemathstv
Рекомендации по теме
Комментарии
Автор

Thank you my friend for your entertaining, sympathetic way of solving math exercises. Have a good weekend.

ElvisSaturn
Автор

Wonderful work through sir. Thanks so much for a job well done. More success sir...❤❤

danielfranca
Автор

Parfait 👍👍👍..belle continuation 🌹🙏🇩🇿🇩🇿🇩🇿🇩🇿

aines
Автор

Thank you for explaining. I think the solution is only x=√6 .  I checked and I got to know "-√6 cannot satisfy the given equation."
Actually, [ if x=√6, (the left side) = √(6+4)+√(6+9) = √10+√15, and (the right side) = √((√6+2)^2+(√6+3)^2) = √(25+10√6) = √15+√10 . (OK) ]
if x=-√6, (the left side) = √(6+4)+√(6+9) = √10+√15, but (the right side) = √((-√6+2)^2+(-√6+3)^2) = √(25-10√6) = √15-√10 .
Thus, if x=-√6, (the left side) ≠ (the right side) . Therefore, the solution is only x=√6.

sy
Автор

please can you plug in /6 in the equation to show it's true

henrynwabueze
Автор

thank you, well done, i made the test successfully)

MeinhartKöster
Автор

2x² + 13 + 2√[(x² + 4)(x² + 9)]
= (x + 2)² + (x + 3)²

2x² + 13 + 2√(x⁴ + 13x² + 36) = 2x² + 13 + 10x

√(x⁴ + 13x² + 36) = 5x
x⁴ - 12x² + 36 = 0
(x² - 6)² = 0 => x = ± √6

VERIFICATION

x = √6
√10 + √15 = √(10 + 15 + 10√6)
√5(√2 + √3) = √(25 + 10√6)
√5(√2 + √2) = √5√(5 + 2√6)
√5(√2 + √3) = √5(√2 + √3) [ TRUE ]

x = -√6
√10 + √15 = √(10 + 15 - 10√6)
√5(√2 + √3) = √(25 - 10√6)
√5(√2 + √2) = √5√(5 - 2√6)
√5(√2 + √3) = √5(-√2 + √3) [ FALSE ]

*x = √6*

SidneiMV