China Math Olympiad Problem | A Very Nice Geometry Challenge | 2 Different Methods

preview_player
Показать описание
GET MY EBOOKS
•••••••••••••••••••••••

OTHER CHAPTERS : COMING SOON.....
--------------------------------------------------------------------------------

Join the channel to become a member
Рекомендации по теме
Комментарии
Автор

Extend BC to the right and drop a perpendicular from A to the extension. Label the point of intersection as point E. Without loss of generality, we can let length AE = 1. Let length BD = CD = m and length CE = n. By sum of angles of a triangle = 180°, we get <BAE = 60°. <CAE = <BAE - 3Θ = 60° - 3Θ. So, tan(60° - 3Θ) = n, tan(60° - Θ) = m + n, tan(60°) = 2m + n. We know that tan(60°) = √(3)/2, so 2m + n = √(3) and n = √(3) - 2m. So, we eliminate variable n. We can use the tangent difference of angles formula to solve for tan(Θ) and tan(3Θ). That formula is tan(α - ß) = (tan(α) - tan(ß))/(1 + tan(α)tan(ß)). In the first case, let α = 60° and ß = Θ. In the second case, let α = 60° and ß = 3Θ. We can compute tan(2Θ) from tan(Θ) by the tangent double angle formula. Then, we have tan(3Θ) = tan(2Θ + Θ) and have a formula which can be solved for m. We compute n from n = √(3) - 2m and take arctan(n), which equals 60° - 3Θ, which we solve for Θ.

We can always take an educated guess that <CAE = 15°, then Θ = 15°. n = tan(15°) = 2 - √(3) = √(3) - 2m, 2m = 2√(3) - 2. m = √(3) - 1 DE = m + n = √(3) - 1 + 2 - √(3) = 1. So, tan(<DAE) = 1 and <DAE = 45°, so 45° = 2Θ + 15° and Θ = 15°. If Θ = 15°, <BAE is correctly 60°. As a final check, tan(<BAE) = 2m + n = 2√(3) - 2 + 2 + √3 = √(3) and tan(60°) = √(3).

jimlocke
Автор

Construct the semicircle with diameter BC and center D.

It can be shown that the foot of the height from C to AB is split into 30 deg and 60 deg by the radius of the semicircle, which satisfies the condition of the problem statement.

Hence, theta can also be 30 deg.

oscarcastaneda
Автор

sine law gives two results
theta = 30 and theta = 15
x/sin(theta) = y/sin(150-theta)
2x/sin(3theta) = y/sin(150-3theta)
x/y = sin(theta)/sin(150-theta)
2x/y = sin(3theta)/sin(150-3theta)
And we have followinng equation
sin(3theta)/sin(150-3theta) - 2sin(theta)/sin(150-theta) = 0
This equation can be reduced to the polynomial equation of third degree in terms of tan(theta)

holyshit
Автор

The angle theta is 15°. This problem is REALLY similar to the other problems and I am starting to think that the angle 15° should be understood as an essential angle that regardless of method should be expected. Also I commented on yesterday's video and I FINALLY got the HL similarity right!!!

michaeldoerr
Автор

Two methods are entirely different and it is marvelous.

purnajinananandaavadhuta
Автор

Use wildfire creo to draw a circle. A straight line passes through the center of the circle. Take the center of the circle and two points on the circle. Mark 30 degrees. sd1=2*sd2. There are many results.

elroqxu
Автор

Площади треугольников ABD и DBC равны: S(ABD)=S(DBC)
AB*BD*sinα=BD*BC*sin2α
AB=2*BC*cosα
Пусть h высота треугольника ABC, тогда h=AB*sin30°=AB/2=BC*cosα
В случае если угол ACB>90°:
α+2α+α=60°
α=15°
Если допустить, что угол ACB<90°, то cos(3α-60°)=cosα
α=30°

ДмитрийИвашкевич-ят
Автор

second result : teta =30 6:49 because (90-teta+30+3*teta=180 >> teta =30)

uferbenzo
Автор

Задача имеет два решения : одно приведено ( излишне сложно ), другое почти очевидное, если угол BAC прямой.

teoremaferma
Автор

There are two solutions to this problem. One solution is Θ = 30° which forms △ ABC 30°-60°-90°. Another solution is Θ = 15° which forms △ ABC 30°-45°-105°.
The end result of solving gave this equation: 64*sin⁶(Θ) - 80*sin⁴(Θ) + 20*sin²(Θ) - 1 = 0 (square root of cubic equation). I also used FreeCAD drawing to prove.

arizonarunner
Автор

As ∠ABC = 30° and ∠CAB = θ+ 2θ = 3θ, ∠BCA = 180°-(30°+3θ) = 150°-3θ. Let BC = DC = x.

By the law of sines:

Triangle ∆BDA:
DA/sin(30°) = BD/sin(θ)
DA/BD = sin(30°)/sin(θ)
DA/x = 1/2sin(θ)

Triangle ∆DCA:
DA/sin(150°-3θ) = DC/sin(2θ)
DA/DC = sin(150°-3θ)/sin(2θ)
DA/x = sin(30°+3θ)/2sin(θ)cos(θ)

1/2sin(θ) = sin(30°+3θ)/2sin(θ)cos(θ)
1 = sin(30°+3θ)/cos(θ)
cos(θ) = sin(30°+3θ)
sin(90°-θ) = sin(30°+3θ)
90° - θ = 30° + 3θ
4θ = 90° - 30° = 60°
θ = 60°/4 = 15°

Edit: In your second method, you can avoid the more complex equation regarding triangle ∆CDF by recognizing that ∆CDF and ∆FAD are similar triangles. Thus the 60°-2θ in ∆CDF equals the 2θ in ∆FAD, from which the solution of 15° can be easily found.

quigonkenny
Автор

φ=30° → sin⁡(3φ) = 1; ∆ ABC → AB = AP + BP; BC = BD + CD = a + a; ABC = φ
DAB = θ; CAD = 2θ → θ = ? BD = PD = a → PBD = DPB = φ → PDC = DCP = 2φ → CPD = 2φ
PD = PA = a → APD = 5φ → PDA = DAP = φ/2 = θ; btw: AC = a√2; AD = (a√2/2)(√3 + 1)

murdock
Автор

When solving the equation sin(90-θ)=sin(30+3θ), there is a case that the solution did not address, which is 90-θ+30+3θ=180, and from it θ=30. In this case, the triangle ABC is right at A.

ناصريناصر-سب
Автор

i thought of constructing triangle ACE where angle AEC is 90. There would be 30 60 90 special triangle

shaozheang
Автор

Тригонометрическое уравнение имеет два решения: 15 и 30 гр.

teoremaferma
Автор

Delta=15° (according to theorem sinus)

prossvay
Автор

{150°BAD+30°DCA}/180°BADDCA 3^60 3^30^2 3^3^10^2 1^3^2^5^2 3^1^1^2 32 (BADDCA ➖ 3BADDCA+2).

RealQinnMalloryu
Автор

Col teorema dei seni risulta 2cosθ=cos3θ+√3sin3θ...da cui risulta θ=30(uhm..), θ=15

giuseppemalaguti
Автор

The problem has 2 solutions: theta = 15 or 30 degrees.

georgexomeritakis