filmov
tv
302.S7b: Field Automorphisms and Galois Groups
Показать описание
Motivated by symmety groups of polygons, we define automorphisms of a field extension, their fixed fields, and the Galois group. The real-to-complex number field extension provides a basic but fully-worked example.
302.S7b: Field Automorphisms and Galois Groups
302.S7a: Symmetries to Motivate Field Automorphisms
302.S7c: Two Galois Group Examples
Galois 10
Visual Group Theory, Lecture 6.2: Field automorphisms
302.S9A: Galois Groups and 'Stubborn' Polynomials
302.S8C: Automorphisms of Normal Extensions
431 — 06: Field Automorphisms and the Galois Group
302.S6b: Cyclotomic Extensions and Automorphisms
Galois Extension and Group
FIT4.3. Galois Correspondence 1 - Examples
Galois 11
302.S9B: The Galois Correspondence
Two Galois Group Examples HD
Galois Fields, Part Two
Chapter 13: Automorphisms of Fields
The Galois correspondence
FLOW Automorphisms That Fix A Subfield
GALOIS THEORY||AUTOMORPHISM GROUPS||FIXED FIELDS|| M.SC MATHEMATICS
Galois Extensions: An Example of Finding a Galois Group
Example Galois Group Primitive Root
FIT1.2. Characteristic p
FLOW The Fixed Field of a Group of Automorphisms
Finite Fields-11( Automorphisms and Conjugates, Galois Group of F_{q^m} over F_q )
Комментарии