Yan Wu | 'NAS as Sparse Supernet' & 'Trilevel NAS for Efficient Single Image Super-Resolution'

preview_player
Показать описание
Yan Wu | AutoML Seminars | 03.06.21

Title: “Neural Architecture Search as Sparse Supernet"

Abstract
This paper aims at enlarging the problem of Neural Architecture Search (NAS) from Single-Path and Multi-Path Search to automated Mixed-Path Search. In particular, we model the NAS problem as a sparse supernet using a new continuous architecture representation with a mixture of sparsity constraints. The sparse supernet enables us to automatically achieve sparsely-mixed paths upon a compact set of nodes. To optimize the proposed sparse supernet, we exploit a hierarchical accelerated proximal gradient algorithm within a bi-level optimization framework. Extensive experiments on Convolutional Neural Network and Recurrent Neural Network search demonstrate that the proposed method is capable of searching for compact, general and powerful neural architectures.

Title: "Trilevel Neural Architecture Search for Efficient Single Image Super-Resolution"

Abstract
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search (NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our method's clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.

-----
Рекомендации по теме