filmov
tv
Higgs Boson [ God's Particle ] HD 720p
Показать описание
According to the Standard Model, a field of the necessary kind (the Higgs field) exists throughout space and breaks certain symmetry laws of the electroweak interaction.[e] Via the Higgs mechanism, this field causes the gauge bosons of the weak force to be massive at all temperatures below an extreme high value. When the weak force bosons acquire mass, this affects their range, which becomes very small.[f] Furthermore, it was later realised that the same field would also explain, in a different way, why other fundamental constituents of matter (including electrons and quarks) have mass. Physicists explain the properties and forces between elementary particles in terms of the Standard Model – a widely accepted framework for understanding almost everything in the known universe, other than gravity. (A separate theory, General Relativity, is used for gravity.) In this model, the fundamental forces in nature arise from properties of our universe called gauge invariance and symmetries. The forces are transmitted by particles known as gauge bosons.
In the Standard Model, the Higgs particle is a boson with spin zero, no electric charge and no colour charge. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. The Higgs field has a "Mexican hat-shaped" potential. In its ground state, this causes the field to have a nonzero value everywhere (including otherwise empty space), and as a result, below a very high energy it breaks the weak isospin symmetry of the electroweak interaction. (Technically the non-zero expectation value converts the Lagrangian's Yukawa coupling terms into mass terms). When this happens, three components of the Higgs field are "absorbed" by the SU(2) and U(1) gauge bosons (the "Higgs mechanism") to become the longitudinal components of the now-massive W and Z bosons of the weak force. The remaining electrically neutral component either manifests as a Higgs particle, or may couple separately to other particles known as fermions (via Yukawa couplings), causing these to acquire mass as well.
In the Standard Model, the Higgs particle is a boson with spin zero, no electric charge and no colour charge. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. The Higgs field has a "Mexican hat-shaped" potential. In its ground state, this causes the field to have a nonzero value everywhere (including otherwise empty space), and as a result, below a very high energy it breaks the weak isospin symmetry of the electroweak interaction. (Technically the non-zero expectation value converts the Lagrangian's Yukawa coupling terms into mass terms). When this happens, three components of the Higgs field are "absorbed" by the SU(2) and U(1) gauge bosons (the "Higgs mechanism") to become the longitudinal components of the now-massive W and Z bosons of the weak force. The remaining electrically neutral component either manifests as a Higgs particle, or may couple separately to other particles known as fermions (via Yukawa couplings), causing these to acquire mass as well.