filmov
tv
If \( f(x)=a+b x+c x^{2} \) and \( \alpha, \beta, \gamma \) are roots of the equation \( x^{3}=1...

Показать описание
If \( f(x)=a+b x+c x^{2} \) and \( \alpha, \beta, \gamma \) are roots of the equation \( x^{3}=1 \), then \( \left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right| \) is equal to
(A) \( f(\alpha)+f(\beta)+f(\gamma) \)
(B) \( f(\alpha) f(\beta)+f(\beta) f(\gamma)+f(\gamma) f(\alpha) \)
(C) \( f(\alpha) f(\beta) f(\gamma) \)
(D) \( -f(\alpha) f(\beta) f(\gamma) \)
(A) \( f(\alpha)+f(\beta)+f(\gamma) \)
(B) \( f(\alpha) f(\beta)+f(\beta) f(\gamma)+f(\gamma) f(\alpha) \)
(C) \( f(\alpha) f(\beta) f(\gamma) \)
(D) \( -f(\alpha) f(\beta) f(\gamma) \)