Plasma The fourth State of Matter

preview_player
Показать описание
Plasma is  defined as a state of matter predominantly comprised of ions and electrons. An ion is formed when an atom or molecule gains or loses electrons, yielding an overall charge (either positive or negative). The presence of charged ions means that a plasma is highly electrically conductive and responds strongly to magnetic and electric fields. Its behavior is most comparable to that of a gas, as the plasma has no defined volume but instead assumes the volume of the container it is in. Despite all of the constituent particles being charged, typically the plasma itself has no overall charge. However, some plasmas (non-neutral) can be created with an overall charge (either positive or negative) and are composed of pure electron, ion, positron, or antiproton plasma.
Plasmas commonly form by heating a gas to searing temperatures. When heated, the atoms in the gas either gain or lose electrons (ionization) and the end result is a charged particle plasma. Packed full of charged particles (positive ions, electrons, or negative ions), the plasma can also be created by breaking any molecular bonds with a magnetic field via a device such as a laser. The record for the hottest plasma formed on Earth measures a scorching 6 trillion degrees Celsius (10.8 trillion °F)! Definitely hotter than the temperature of the centre of the Sun, which comes in at a puny 5 million °C (9 billion °F).

This record temperature was recorded in the Large Hadron Collider; where scientists smashed lead ions, creating a quark-gluon plasma to simulate conditions at the start of the universe. Maintaining plasma is a fine art; it requires careful use of energy, balancing the number of electrons stripped from one nucleus and the number of electrons that recombine with another nucleus. The recombination emits a unique glow of light, characteristic of plasmas. If too many electrons are captured, the plasma will return to a traditional gas state; if too few recombine, the energy required in maintaining the plasma will increase.

If too many electrons are captured, the plasma will return to a traditional gas state; if too few recombine, the energy required in maintaining the plasma will increase.

Examples of plasmas are varied and many, but a few examples are particularly intriguing with lightning as possibly the most famous of all. When lightning forms, air molecules are stripped of their electrons, creating a conducting path and allowing clouds to discharge a huge amount of electrical energy at temperatures of around 30,000 °C (54,000 °F). A more accessible example is the plasma display TV. Noble gasses are confined to tiny cells spread across the face of the display in a way so that when high voltages spread across the cell a plasma is created and UV photons are released (a result of energy changes from recombined electrons). The photons are then absorbed by the coating of the cell, subsequently emitting photons in the visible spectrum, producing the pixels we see on the screen.

A more accessible example is the plasma display TV. Noble gasses are confined to tiny cells spread across the face of the high-temperature, high-pressure conditions in a star creating an environment where nuclear fusion can occur. This could prove to be an incredible.

#Plasma
#fourthstateofmatter
Рекомендации по теме