filmov
tv
What Do Neural Networks Really Learn? Exploring the Brain of an AI Model

Показать описание
Neural networks have become increasingly impressive in recent years, but there's a big catch: we don't really know what they are doing. We give them data and ways to get feedback, and somehow, they learn all kinds of tasks. It would be really useful, especially for safety purposes, to understand what they have learned and how they work after they've been trained. The ultimate goal is not only to understand in broad strokes what they're doing but to precisely reverse engineer the algorithms encoded in their parameters. This is the ambitious goal of mechanistic interpretability. As an introduction to this field, we show how researchers have been able to partly reverse-engineer how InceptionV1, a convolutional neural network, recognizes images.
▀▀▀▀▀▀▀▀▀SOURCES & READINGS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
This topic is truly a rabbit hole. If you want to learn more about this important research and even contribute to it, check out this list of sources about mechanistic interpretability and interpretability in general we've compiled for you:
On Interpreting InceptionV1:
More recent progress:
Mapping the Mind of a Large Language Model:
Extracting Concepts from GPT-4:
Language models can explain neurons in language models (cited in the video):
Neel Nanda on how to get started with Mechanistic Interpretability:
More work mentioned in the video:
▀▀▀▀▀▀▀▀▀PATREON, MEMBERSHIP, MERCH▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀▀▀SOCIAL & DISCORD▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀▀▀PATRONS & MEMBERS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀CREDITS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀▀▀SOURCES & READINGS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
This topic is truly a rabbit hole. If you want to learn more about this important research and even contribute to it, check out this list of sources about mechanistic interpretability and interpretability in general we've compiled for you:
On Interpreting InceptionV1:
More recent progress:
Mapping the Mind of a Large Language Model:
Extracting Concepts from GPT-4:
Language models can explain neurons in language models (cited in the video):
Neel Nanda on how to get started with Mechanistic Interpretability:
More work mentioned in the video:
▀▀▀▀▀▀▀▀▀PATREON, MEMBERSHIP, MERCH▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀▀▀SOCIAL & DISCORD▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀▀▀PATRONS & MEMBERS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▀▀▀▀▀▀▀CREDITS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Комментарии