Can you find the value of m/n? | (Justify) |#math #maths | #geometry | #trigonometry

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you find the value of m/n? | (Justify) |#math #maths | #geometry | #trigonometry

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#Findm/n #FindRatio #Trigonometry #SOHCAHTOA #Triangles #GeometryMath
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

Without trigonometry. Additional constructions:
1. ∠ВАК = х (К - on ВС).
2. DM - мedian in ▲DCВ.
3. КН ⟂ АВ, МР ⟂ АВ.
СК = 16, МВ = 18, КМ = 2. КМ : МВ = НР : РВ = НР : DР = 1 : 9.
НD = (8/9)DР = (8/9)n/2. АН = (m + n)/2. АD = m = АН - НD = (m + n)/2 - (8/9)n/2.
9m + 9n - 8n = 18m. n = 9m, m/n = 1/9.

adept
Автор

Let's face this challenge:
.
..
...
....


The triangles ACD and BCD are both right triangles. Therefore we can conclude:

sin(3x) = CD/AC ⇒ CD = AC*sin(3x)
sin(x) = CD/BC ⇒ CD = BC*sin(x)

AC*sin(3x) = BC*sin(x)
sin(3x)/sin(x) = BC/AC = 36/16 = 9/4

sin(3x)
= sin(2x + x)
= sin(2x)*cos(x) + cos(2x)*sin(x)
= 2*sin(x)*cos(x)*cos(x) + [cos²(x) − sin²(x)]*sin(x)
= 2*sin(x)*cos²(x) + sin(x)*cos²(x) − sin³(x)
= 3*sin(x)*cos²(x) − sin³(x)
= 3*sin(x)*[1 − sin²(x)] − sin³(x)
= 3*sin(x) − 3*sin³(x) − sin³(x)
= 3*sin(x) − 4*sin³(x)

sin(3x)/sin(x) = 9/4
3 − 4*sin²(x) = 9/4
−4*sin²(x) = 9/4 − 3 = 9/4 − 12/4 = −3/4
sin²(x) = 3/16
⇒ sin(x) = √3/4

CD = BC*sin(x) = 36*(√3/4) = 9√3

Now we can apply the Pythagorean theorem to the right triangles ACD and BCD:

m² = AD² = AC² − CD² = 16² − (9√3)² = 256 − 243 = 13
n² = BD² = BC² − CD² = 36² − (9√3)² = 1296 − 243 = 1053

m²/n² = 13/1053 = 13/(13*81) = 1/81 ⇒ m/n = 1/9

Best regards from Germany

unknownidentity
Автор

Right! ... so @ 4:12 & 8:00 those famous Triple Angle Identities look scary, but they're not really! They're just extensions of Double Angle Identities. The scary part about these Triple Nipple Aliens is that like Trigonometry having 6 Trigonometric Functions there are 6 Triple Angle Functions and committing them too memory takes 6 brains. 🙂

wackojacko
Автор

1/From A draw a line forming with AB an angle= x, intersecting BC at point E.
We have 2 isosceles triangles: ACE and AEB.
So AC=CE= 16 and AE=EB=20.
2/ Calculating cosine of angle ACE by cosine law:
Sq20=sq16+sq16 -2 sq16. Cos(ACE)
—> cos ACE=7/32
2/ Calculating AB by cosine law:
SqAB= sq16+sq36 -2x16x36x7/32
—> AB= 10sqrt13
3/Calculating m and n:
Label CD=h
We have sq h= sq16-sq m
and sq h= sq36 - sq(10sqrt13 - m)
—> sq16-sqm=sq36-1300-sqm +20sqrt13.m

—> m=sqrt13 and n=9sqrt13
The ratio m/n = 1/9 😅

phungpham
Автор

Without trigonometric formulas I draw a length from A to a point (let’s say P) on BC sharing 3x into x and 2x then I saw that PC=AC since CPA=2x so CP=16 and since APB is an isocele if we draw a length from P to a point let’s say Q on DB so Q is the midpoint of DB. Now we have DQ=n-m/2 and QB=m+n/2 the result from now on is easy look at the triangle CDB use Thales theorem which gives us m/n=1/9!

kubilayc.
Автор

Very challenging, thanks PreMath. I did a cumbersome solution without trig. Construct CE with point E "m" distance to the right of D on AB. Bisect ECB with the bisector meeting AB at F. Triangle EBC is similar to EDF. And DF is equal to FB. Similar triangles gives DF and FB=72/sqrt13. Angle bisector theorem gives EF=32/sqrt13. Pythagoras on CDE and CDB gives m=sqrt13. Add DE, EF, and FB to get n=9*sqrt13.

waheisel
Автор

According to euklid (in german, we call it "Kathetensatz"), m*(m+n)=16^2 and n*(m+n)=36^2. therefor

Tthis result (m/n=16/81) is different from your result. Why?

i just checked, if it is possibe, that the legs of the triangle are 16 and 36 and the anges are x and 3x, if m/n)=1/9.
The hpothhenuse of the triangle is sqrt(16^2+36^2) which is about 39.4. If m/n=1/9, m must be about 3.94 and n must be about 35.46.
inverse cosine of 3.94/16 is about 75.75°, inverse cosine of 35.46/36 is about 9.93°, so the angles of the triangle can not be x and 3x, if the legs of the rectangularttriangle are 16 and 36.

I saw, it was my mistake: the triangle ABC is not a rectangular triangle ...

juergenilse
Автор

My way of solution ▶
we write the Sinus theorem for the right triangle ΔADC:
sin(3x)/h= sin(90-3x)/m= sin(90°)/16
sin(90°-3x)= sin(90°)*cos(3x) - cos(90°)*sin(3x)
sin(90°- 3x)= cos(3x)

sin(90-3x)/m= sin(90°)/16
cos(x)/m= 1/16

m= 16*cos(3x)

b) we write the Sinus theorem for the right triangle ΔDBC:
sin(x)/h= sin(90-x)/n= sin(90°)/36
sin(90°-x)= sin(90°)*cos(x) - cos(90°)*sin(x)
sin(90°- x)= cos(x)

sin(90-x)/n= sin(90°)/36
cos(x)/n= 1/36

n= 36*cos(x)

c) m/n = 16cos(3x)/36cos(x)
m/n = (16/36)*cos(3x)/cos(x)
m/n =
m/n =
sin(2x)= 2*sin(x)*cos(x)

m/n = -
m/n - 2sin²(x)]
cos(2x)= 2cos²(x) -1

m/n -1 - 2sin²(x)]
m/n = (16/36)[2cos²(x) -1 -

d) we write the Sinus theorem for the right triangle ΔABC:
sin(3x)/36= sin(x)/16= sin(180°- 4x)/(m+n)

sin(3x)/36= sin(x)/16
sin(3x)/sin(x)= 36/16
sin(2x+x)/sin(x)= 9/4
9/4
[2*sin(x)*cos(x)*cos(x) + cos(2x)*sin(x)]/sin(x)= 9/4
[2cos²(x) + cos(2x)]= 9/4
cos(2x)= 2cos²(x)-1

[2cos²(x) + 2cos²(x)-1]= 9/4
4cos²(x) -1= 9/4
4cos²(x)= 1 + 9/4
4cos²(x)= 13/4
cos²(x)= 13/16
cos(x)= √13/4

sin²(x)= 1- 13/16
sin²(x)= 3/16

e) Equation-1 of step c :
m/n= (16/36)[2cos²(x) -1 - 2sin²(x)]
m/n= (4/9)[2*(13/16)-1 - 2*(3/16)]
m/n= (4/9)[13/8 - 1 - 3/8]
m/n= (4/9)[5/8 - 3/8]
m/n= (4/9)(2/8)
m/n= (4/9)*(1/4)
m/n= 1/9 is the answer !

Birol
Автор

I would never find this solution. Does another one exist?

AndreasPfizenmaier-yw
Автор

Be h = CD. And tan(x) = t.
*tan(3.x) = h/m and tan(x) = h/n, so m/n = tan(x)/tan(3.x)
We know that tan(3.x) = (3.tan(x) - (tan(x))^3)/(1 - 3.(tan(x))^2)
So m/n = (1 - 3.t^2)/(3 - t^2).
*sin(3.x) = h/16 and sin(x) = h/36, so sin(3.x)/sin(x) = 9/4
We know that sin(3.x) = 3.sin(x) - 4.(sin(x))^3, ,
so 3 - 4.(sin(x)^2 = 9/4, and (sin(x))^2 =3/16.
Then (cos(x))^2 = 1 - 3/16 = 13/16, and t^2 = (tan(x))^2 = 3/13
*Finally m/n = (1 -3.(3/13))/(3 - 3/13) = 4/36 = 1/9.

marcgriselhubert
Автор

Let CD = y. In triangle ∆CDB, y = 36sin(x). In triangle ∆ADC, y = 16sin(3x).

sin(3x) = sin(2x+x)
sin(3x) = sin(2x)cos(x) + cos(2x)sin(x)
sin(3x) = (2sin(x)cos(x))cos(x) + (cos²(x)-sin²(x))sin(x)
sin(3x) = 2sin(x)cos²(x) + (1-sin²(x)-sin²(x))sin(x)
sin(3x) = 2sin(x)(1-sin²(x)) + (1-2sin²(x))sin(x)
sin(3x) = 2sin(x) - 2sin³(x) + sin(x) - 2sin³(x)
sin(3x) = 3sin(x) - 4sin³(x)

36sin(x) = 16sin(3x)
36sin(x) = 16(3sin(x)-4sin³(x))
36 = 16(3-4sin²(x))
36 = 48 - 64sin²(x)
64sin²(x) = 12
sin²(x) = 12/64 = 3/16
sin(x) = √(3/16) = √3/4
y/36 = √3/4
36√3 = 4y
y = 36√3/4 = 9√3

Triangle ∆CDB:
CD² + DB² = BC²
(9√3)² + n² = 36²
243 + n² = 1296
n² = 1296 - 243 = 1053
n = √1053 = 9√13

Triangle ∆ADC:
AD² + CD² = CA²
m² + 243 = 16²
m² = 256 - 243 = 13
m = √13

m/n = √13/9√13 = 1/9

quigonkenny
Автор

STEP-BY-STEP RESOLUTION PROPOSAL :

01) Let CD = h
02) sin(3x) = h / 16 ; h = 16sin(3x)
03) sin(x) = h / 36 ; h = 36sin(x)
04) 16sin(3x) = 36sin(x) ; 4sin(x) = 9sin(3x)
05) x = 0, 44783 radians ; x ~ 25, 66º
06) cos (0, 44783 rad) ~ 0, 902
07) cos (3*0, 4473 rad) ~ 0, 225
08) n = 36*0, 902 ; n ~ 32, 450
09) m = 16*0, 225 ; m ~ 3, 606
10) m / n ~ 0, 1111

Therefore,

OUR ANSWER :

m / n ~ 0, 1111

LuisdeBritoCamacho
Автор

36 sin x=16 sin 3x, m=16 cos 3x, n=36 cos x, m/n=4/9 cos 3x/cos

misterenter-izrz
Автор

The blurb says m/m, so I say the solution is 1 :)
However, the video has m/n :)

MrPaulc
Автор

sin3x = h/16
sinx = h/36

sin3x = sin(2x + x) = sin2x*cosx + sinx*cos2x
h/16 = 2*sinx*cosx*cosx + sinx*(1 - 2sinx^2)
h/16 = 2*sinx*cosx^2 + sinx*(1 - 2sinx^2)
h/16 = 2*sinx*(1 - sinx^2) + sinx*(1 - 2sinx^2)
h/16 = 2*h/36*(1 - (h/36)^2) + h/36*(1 - 2*(h/36)^2)
h/16 = h/18*(1 - h^2/1296) + h/36*(1 - 2*(h^2/1296))
h/16 = h/18*(1 - h^2/1296) + h/36*(1 - h^2/648)
h/16 = h/18*((1296 - h^2)/1296) + h/36*((648 - h^2)/648)
1458*h = h*(1296 - h^2) + h*(648 - h^2)
1458*h = 1296*h - h^3 + 648*h - h^3
2h^3 = 486*h
h^2 = 243

16^2 = h^2 + m^2
m^2 = 256 - 243
m^2 = 13
m = sqrt(13)

36^2 = h^2 + n^2
n^2 = 1296 - 243
n^2 = 1053
n = sqrt(1053)
n = 9*sqrt(13)

m/n = sqrt(13)/9*sqrt(13)
m/n = 1/9

sergiosereno