Let G be group, a ɛ G and O(a)=n. Then for any positive integer k, O(a^k) =n/(n,k).

preview_player
Показать описание
In this lecture we will discuss that Let G be group, a ɛ G and O(a)=n. Then for any positive integer k, O(a^k) =n/(n,k).

******************************************************************************

For definition of order of element of group

*****************************************************************************

For previous lecture

*****************************************************************************

For definition of group

*****************************************************************************

*****************************************************************************

**LIKE**

*SHARE**

**SUBSCRIBE**

#grouptheory #abstractalgebra

--------------------------------------------------------------------------------------------------------------------------------------------------------------
Рекомендации по теме
Комментарии
Автор

Very nice bhai 🥰😊😊mast prhaaya 👍🏻thnku so much

navpreetKaur-xxbt
Автор

Kya ap jo isse agla topic hai Idempotent element uski theroms bhi krwa skte ho because ap bhut achaa krvate ho..

shivaniSharma-
Автор

Hi sir..Pls explained in English language

jothikajo
Автор

Really thank u so so so so much sir 😇😇😇😇😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁

Finished-hc
Автор

Jab ye therom paper mai aye to kya humne ye cor. Bhi likhni pdti hai...??

shivaniSharma-
Автор

Mzaaa agya bro thnkx so much bs end pr thoda sa doubt bcha h corolli m

Indiandragon
Автор

Bhaia (show that the equation x^2 ax=a^-1 is solvable for x in a group G if and only if a is the cube of some element in G.) please is ko explain kijiya. 🙏

Sahil-ykhq
Автор

bhai gcd of (N1, k1)=1 let karne sa kya ho jaya ga

chunmunchunmun