Let G be a group, a ɛ G and O(a)=n. Then a^m=e iff n|m.

preview_player
Показать описание
In this lecture we will discuss that Let G be a group, a ɛ G and O(a)=n. Then a^m=e iff n|m.

******************************************************************************

For definition of order of element of group

*****************************************************************************

*****************************************************************************

For definition of group

*****************************************************************************

*****************************************************************************

**LIKE**

*SHARE**

**SUBSCRIBE**

#grouptheory #abstractalgebra

-------------------------------------------------------------------------------------------------------------------------
Рекомендации по теме
Комментарии
Автор

Tq so much u can explain very well sir

sriankamreddy
Автор

Thank you Sir .your method of teaching is so good 👍

rajarustam
Автор

Thank u very much it was very help ful for me to understand keep growing best of luck 👍

DesiBrowns
Автор

Thank you sir .... Excellent explanation...

ramdevramavat
Автор

thank you sr
u video is very helpful
I was struggling in understanding this theorem
but after this video I understand it nicely

isharawat
Автор

Sir your videos are very helpful can you please help me to solve this ques (in a group G let a be an element of finite order n. if a positive integer K is a divisior of n prove that o(a^k)=n/k

Sahil-ykhq