filmov
tv
Physics Colloquium, 'Programmable quantum sensing using ultracold atoms in 3D optical lattices'
Показать описание
Presented by: Murray Holland, JILA, University of Colorado, Boulder
Wednesday, March 20, 2024
Host: James K. Thompson
Abstract: The creation of a matter-wave interferometer can be achieved by loading Bose-Einstein condensed atoms into a crystal of light formed by interfering laser beams. By translating this optical lattice in a specific way, the traditional steps of interferometry can all be implemented, i.e., splitting, propagating, reflecting, and recombining the quantum wavefunction. Using this concept, we have designed and built a compact device to sense inertial signals, including accelerations, rotations, gravity, and gravity gradients. This approach is interesting, since the atoms can be supported against external forces and perturbations, and the system can be completely programmed on-the-fly for a new design goal. I will report on experimental results in which atoms are cooled into a dipole trap and subsequently loaded into an optical lattice. Protocols for obtaining interferometry steps are derived via machine learning and quantum optimal control methods. Implementing these in the lab, I will show our recent demonstrations of a vector accelerometer capable of sensitively deducing the magnitude and direction of an inertial force in a single shot. I will discuss our vision to use this platform for remote sensing of Earth as part of the recently founded NASA Quantum Pathways Institute.
Wednesday, March 20, 2024
Host: James K. Thompson
Abstract: The creation of a matter-wave interferometer can be achieved by loading Bose-Einstein condensed atoms into a crystal of light formed by interfering laser beams. By translating this optical lattice in a specific way, the traditional steps of interferometry can all be implemented, i.e., splitting, propagating, reflecting, and recombining the quantum wavefunction. Using this concept, we have designed and built a compact device to sense inertial signals, including accelerations, rotations, gravity, and gravity gradients. This approach is interesting, since the atoms can be supported against external forces and perturbations, and the system can be completely programmed on-the-fly for a new design goal. I will report on experimental results in which atoms are cooled into a dipole trap and subsequently loaded into an optical lattice. Protocols for obtaining interferometry steps are derived via machine learning and quantum optimal control methods. Implementing these in the lab, I will show our recent demonstrations of a vector accelerometer capable of sensitively deducing the magnitude and direction of an inertial force in a single shot. I will discuss our vision to use this platform for remote sensing of Earth as part of the recently founded NASA Quantum Pathways Institute.