RAG with Llama-Index: Vector Stores

preview_player
Показать описание
In this third video of our series on Llama-index, we will explore how to use different vector stores in llama-index while building RAG applications. We will look at self-hosted solution (chroma-DB) and cloud-based solution (Pinecone).

CONNECT:

Links:

Timestamps:
[00:00] Intro
[00:21] Vector stores in llamaIndex
[01:24] Basic Setup
[02:45] Upload files
[03:45] Self-Hosted Vector Store
[09:00] Cloud based Vector Store
Рекомендации по теме
Комментарии
Автор

Want to connect?
|🔴 Join Patreon: Patreon.com/PromptEngineering

engineerprompt
Автор

This tutorial series is great ! Best one I found so far. Thank you for sharing this.

AchiniHewawitharana
Автор

Great work. Excellent topic. Llama index opens up so much more possibility for RAG. Im very much interested in building a knowledge base. That gets added to on a daily basis. What do think of knowledge graph in this context

gregorykarsten
Автор

great video. Thanks. waiting for addition of Local LLM in the same code

anilshinde
Автор

Awesome Work, Like Always.
Can you refer to documentation or video "on how to update the chromadb in this context"

hassentangier
Автор

Super interesting, looking forward to the video

vitalis
Автор

This was great, love this kind of content! ❤❤❤

fuba
Автор

please make the video comparing different embedding models

arkodeepchatterjee
Автор

Why is OpenAI API Key needed when it does not use OpenAI? Thanks!

kdlin
Автор

Great I understood most of the explanation in video but Where is the RAG implementation in it ? I have also created a vector_store, storage_context, index etc when I was implementing chatBot with my data, but I am confused on how to implement RAG as an added functionality ?

Rahul-zqep
Автор

Would like to have a video on local download model ( llama2 ggml/gguf ) using llamaindex to build rag pipeline with chormadb. Thank you for videos its helps a lot.

srikanth
Автор

I always seem to run into the problem of exclusions when using vector similarity search for RAG. I.e. when you run a query for "Tell me everything you know about dogs other then Labradors." guess which documents will be returned as first 10 (assuming you have a lot of chunks)? Yes, about Labradors. Has anyone figured a way around that yet?

I've been attempting to filter out results if queries include exclusions with additional LLM passes, but only GPT4 seems to have enough brains to do it correctly. PaLM 2 gets it right in 50% of cases.

smoq
Автор

Is there a way to bypass the rate limit error for openai api?
Additionally, why is the openai being used even after specifically mentioning the service context?

saikashyapcheruku
Автор

I have 2 million data chunks of text, i was used db chroma but it didn't work. Can you help me?

toannn
Автор

Can you share the full architecture diagram

shubhamanand
Автор

I keep receiving this error :
cannot import name 'Doc' from 'typing_extensions'
I am trying to run your codes on jupyter notebook environment. Can you please help and let me know how to create a vector db?

scorpionrevenge
Автор

is this a LangChain competitor library?

hiramcoriarodriguez
Автор

hey i have question as we have injested our data to the vector db how do retrive answer without runnin the injestion code all the time

memsSudar