filmov
tv
Harvard AM205 video 3.18 - CFL condition & upwinding
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. The previous video introduced the linear advection equation, an example of a hyperbolic partial differential equation (PDE). This video develops a finite-difference scheme for the advection equation, and shows that it must satisfy the Courant–Friedrichs–Lewy (CFL) condition in order to obtain stable results. The related concept of upwinding is also discussed.
Harvard AM205 video 3.18 - CFL condition & upwinding
Harvard AM205 video 3.1 - Introduction to numerical calculus
Harvard AM205 video 3.2 - Numerical integration
Harvard AM205 video 5.9 - Krylov methods: Arnoldi iteration and Lanczos interation
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Harvard AM205 video 2.13 - An example of PCA
Harvard AM205 video 3.15 - ODE boundary value problems
Harvard AM205 video 1.5 - Piecewise polynomial interpolation
Harvard AM205 video 5.2 - Eigenvalue definitions
Harvard AM205 video 3.10 - ODE stability
Harvard AM205 video 2.1 - Introduction to numerical linear algebra
Harvard AM205 video 5.1 - Introduction to eigenvalue problems
OWOS: Konstantin Mishchenko - 'Regularized Newton Method with Global O(1/k^2) Convergence'
Harvard AM205 video 3.20 - Method of lines & wave equation
Linear Algebra 2 -4.3.2 - Data Fitting using Least Squares Approximation
Harvard AM205 video 2.11 - Singular value decomposition
Harvard AM205 video 4.9 - Quasi-Newton methods
Harvard AM205 video 1.4 - The Lebesgue constant
Harvard AM205 video 2.9 - Householder triangularization
Module3
Harvard CRCS AI4SG Workshop
Visually Explained: Newton's Method in Optimization
Settling down: simulations of soft immersed rods with the reference map technique
WACV18: QRkit: Sparse, Composable QR Decompositions for Efficient and Stable Solutions ...
Комментарии